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Abstract 

Introduction: Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. 

While medically intractable cases may benefit from surgery, there may be no single, well-

localized focus for resection or ablation. In such cases, approaching the disease from a network-

based perspective may be beneficial. 

Areas covered: Herein, the authors provide a narrative review of normal thalamic anatomy and 

physiology and propose general strategies for preventing and/or aborting seizures by modulating 

this structure. Additionally, they make specific recommendations for targeting the thalamus 

within different contexts, motivated by a more detailed discussion of its distinct nuclei and their 

respective connectivity. By describing important principles governing thalamic function and its 

involvement in seizure networks, the authors aim to provide a primer for those now entering this 

fast-growing field of thalamic neuromodulation for epilepsy. 

Expert opinion: The thalamus is critically involved with the function of many cortical and 

subcortical areas, suggesting it may serve as a compelling node for preventing or aborting 

seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As 

various thalamic neuromodulation strategies for seizure control are developed, there is a need to 

ground such interventions in a mechanistic, circuit-based framework. 

Keywords 

Thalamus, neuromodulation, seizures, epilepsy, anterior nucleus, centromedian nucleus, pulvinar 

nucleus, microcircuits, neurosurgery 
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Article highlights 

 Epilepsy affects more than 45 million people worldwide and is conservatively estimated 

to cost over 10 billion dollars each year in the United States alone. 

  The thalamus acts as a control point for brain-wide information processing, neural 

synchronization, and cortical state via thalamocortical microcircuits. 

 There is extensive evidence that the thalamus is involved, both as a passive node and 

active participant, in seizure onset and propagation in animal models of epilepsy. 

 Clinical trials have thus far highlighted stimulation of the anterior and centromedian 

nuclei of the thalamus as compelling therapies for temporal lobe and generalized 

epilepsies, respectively. 

 The thalamus is likely to become a critical and routinely utilized target for network-based 

seizure treatment.  
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1. Introduction 

Epilepsy is a disease of hyperexcitable neural networks that affects more than 45 million people 

worldwide and is conservatively estimated to cost over 10 billion dollars each year in just the 

United States[1,2]. Improved knowledge of the structural and functional connectivity of brain 

networks has produced insights regarding seizure onset, propagation, and maintenance[3]. Until 

recently, clinical therapy was limited largely to anti-seizure medications (ASMs) or surgical 

resection. While the rate of seizure control in persons with epilepsy has been approximately 70% 

for ASMs, surgical intervention may be an option for those who do not adequately respond to 

medication[4-6]. Those with primary generalized seizures, seizures arising from “eloquent” 

cortical areas, or with multifocal epilepsy, were not typically neurosurgical candidates. Now, 

however, the advent of neuromodulatory approaches means that some or perhaps many of those 

who did not previously have a surgical option are now eligible for operative intervention. 

 

Both open-loop (deep brain stimulation) and closed-loop (responsive neurostimulation) 

neuromodulation devices are now available to treat epilepsy. Each approach has relative benefits 

and disadvantages, but both have opened the door to a more network-centric approach to seizures 

and their treatment. Increasingly, epileptologists and epilepsy surgeons speak of addressing 

networks of interconnected brain structures rather than fixate on a putative single seizure 

focus[7-10]. In contrast to a seizure “focus” that might traditionally be regarded as simply the 

initial point of seizure activity, a “seizure network” is a collection of brain areas whose 

coordinated excitatory and inhibitory interactions yield increasing synchronization that promotes 

seizure onset in one or more components of that network. Even the mechanisms behind vagal 

nerve stimulation (VNS), a longstanding but poorly understood neuromodulatory therapy, has 
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recently been re-examined in the context of thalamic functional networks[11-13]. This 

framework provided impetus for the neuromodulatory approach to epilepsy because electrical 

stimulation may propagate broadly to more effectively treat the networks that give rise to 

seizures[14], and may regulate these circuits in a chronic fashion to reduce seizure 

likelihood[15]. Additionally, as opposed to ASMs, neuromodulatory approaches can provide the 

opportunity to both observe and influence circuits that may be lateralized to either 

hemisphere[16,17]. As neuromodulation is better understood and optimized, it may one day 

become a primary rather than a palliative treatment for epilepsy. 

 

Within this context of new neuromodulation therapies for epilepsy, the thalamus has garnered 

increasing attention in large part because its broad and highly robust connectivity with cortex 

makes it an intuitively attractive target for modulation. Though formerly viewed as a subcortical-

cortical relay node with some modulatory influence on the transmitted information, the thalamus 

is now understood to play a substantial and critical role in processing information as it travels to, 

from, and between cortical areas. Its modular, canonical thalamocortical (TC) and 

corticothalamic (CT) projections are widely appreciated, but the thalamus also makes extensive 

connections with additional deep structures such as the hippocampus, amygdala, piriform lobule, 

and basal ganglia[18]. Nonetheless, our clinical models have yet to fully incorporate the 

improved understanding of thalamic anatomy, physiology, and pathology that has resulted from 

technical advances such as precise intracellular recordings, high-resolution imaging, and 

optogenetics. 

 



 
 

 6 

Information Classification: General 

Here, we provide a comprehensive overview of progress in the study of thalamic circuits 

implicated in the pathogenesis of epilepsy. Our goal is to translate a body of basic, pre-clinical 

neuroanatomical and neurophysiological research for application by clinicians and clinical 

researchers developing and testing novel therapies for epilepsy. We also qualitatively review 

clinical evidence supporting a thalamic approach to epilepsy treatment and propose some general 

principles for neuromodulation of the thalamus in epilepsy. 

 

2. Thalamic Structure and Function 

The thalamus is a cluster of nuclei that are grouped based on shared patterns of connectivity with 

cortical and subcortical areas and are enveloped within the shell-like thalamic reticular nucleus 

(TRN). Topographically organized thalamocortical and corticothalamic projections are the basic, 

modular elements around which more elaborate thalamic circuits are built. The surrounding TRN 

is a major source of feedforward and feedback inhibition. Meanwhile, in contrast to the principal 

nuclei that connect to relatively circumscribed areas of cortex, intralaminar nuclei are more 

diffuse structures with correspondingly broader cortical interactions. Further, the borders 

between principal nuclei are not always distinct and the anatomical and functional perspectives 

do not consistently map directly onto one another. As such, alternative classification schemes 

based on thalamocortical circuitry may more clearly lay the framework for therapeutic thalamic 

neuromodulation.  

 

2.1. Gross Anatomy and Connectivity 

The thalami are paired structures abutting the midline and connected by a small strip of grey 

matter forming the inter-thalamic adhesion. Clusters of thalamic neurons have been grouped by 
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several properties, including: the particular cortical regions with which they interact, whether 

they receive primary (sensory inputs from the periphery) versus secondary (cortical) inputs, or 

based on local anatomy and circuitry. The classic framework organizes the thalamus into various 

nuclei based on histological and anatomical features. Within the classical framework, nuclei are 

apportioned into lateral, medial, anterior, and midline groups, localized in reference to an 

intralaminar group and surrounded by the TRN (Figure 1)[18]. Among several further 

subdivisions, the lateral group of nuclei is segregated into ventral and dorsal tiers[19]. These 

nuclear subdivisions are almost universally accepted and broadly inform function. However, 

increasing evidence suggests that most nuclei do not have a single, neatly-circumscribed role. 

For example, the posteriorly-located pulvinar is classically associated with visual-attentional 

processing[20,21], but has also been implicated in other cognitive functions such as emotional 

processing[22], working memory[23], and decision-making[23]. Even despite further divisions 

of the primate pulvinar into distinct anatomical subgroups (e.g., lateral, inferior, and medial; 

PuL, PuI and PuM), there is evidence that these smaller areas nevertheless have multimodal 

functions[24,25]. 

 

Because classification schemes based primarily on local anatomy and histology do not capture 

the functional heterogeneity of individual thalamic nuclei, some modern thalamic classification 

systems are based on circuit topology[26]. Distinctions have been made based on (i) the 

characteristics of thalamocortical output – core versus matrix nuclei[27], (ii) input – first- versus 

higher-order nuclei[28], or (iii) both input and output[29]. For example (of [i]), the anterior 

nucleus of the thalamus (ANT) has been defined as a core nucleus because it provides focal 

projections as a node in the medial limbic circuit. The pulvinar nucleus, specifically the PuM, 
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also possesses “core-like” properties based on its distinct circuits involving the temporal 

lobe[24]. In contrast, matrix nuclei like the centromedian nucleus of the thalamus (CMT) are 

characterized by markedly more diffuse cortical projections[30]. Meanwhile, within the 

framework of the first- and higher-order nuclear scheme (ii): first-order nuclei receive “driver” 

inputs from subcortical sites carrying primary sensory information (e.g., lateral geniculate 

nucleus [LGN] receives visual input from the retina), while higher-order nuclei (e.g., the 

pulvinar) receive driver inputs from cortical layer V and primarily participate in transthalamic 

cortico-cortical circuits[28]. This classification scheme is useful in that it highlights how the 

thalamus continues to be involved in information processing between areas of cortex in addition 

to modulating and relaying primary sensory information.  

 

The data used to develop these functional frameworks suggest that defining an area within the 

thalamus based on anatomical location alone neglects rich functional diversity. Overlap between 

somatosensory, motor, and auditory afferents and efferents illustrate the difficulty in defining 

clean nucleus-based distinctions. For example: the central lateral (CL), mediodorsal (MD), and 

pulvinar nuclei have all been shown to have extensive cortical projections with overlapping 

modalities consistent with multisensory interplay at the thalamic level[31,32]. Indeed, the roles 

of these and multiple other nuclei may most aptly be characterized by multidomain integrations 

rather than modality-specific computations with specific inputs or outputs[33-35]. This 

intertwining of networks and the heterogeneity of nuclei may be relevant to thalamus-based 

clinical therapy, particularly deep brain stimulation and responsive neurostimulation, and 

encourages this “functional perspective” that may be partially independent of traditional nuclear 

boundaries. Presently, few clinical studies directly leverage functional attributes related to the 
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core/matrix or first/higher-order perspectives, as the anatomically-based organization provides a 

simpler framework to evaluate and target particular thalamic nuclei. To underscore the benefit of 

a functional perspective, however, one might consider the intralaminar and midline groups of 

nuclei: this set of nuclei, which includes the CMT, are often grouped based on their canonical 

association with arousal and attention and their connections with the brainstem reticular 

activating system (RAS) versus their anatomical borders[36]. Thus, thalamic recordings from 

these nuclei in multiple animal models have demonstrated relatively high sensitivity to changes 

in arousal[37-39]. There has been the suggestion, therefore, that targeting these nuclei might 

have preferential effects on the loss of awareness that often accompanies seizures. 

 

2.2. Microcircuits and Proposed Functions 

2.2.1. First- and Higher-Order Microcircuits 

The canonical thalamocortical circuit is well-conserved across cortical domains yet supports 

diverse aspects of cortical processing[40,41]. In general, thalamocortical projections, particularly 

from core nuclei, synapse onto cortical layer IV (Figure 2), and to a somewhat lesser extent 

layer VI[42-44]. Information is broadcasted to superficial layers, integrated/processed, and then 

sent back down to the deep cortical layers. From there, the cortex sends (i) projections from layer 

VI to the thalamus and TRN as a dense feedback projection, and (ii) feed-forward cortical output 

from layer V to the “next” processing stage in the thalamus before it is relayed to a subsequent 

cortical area, in parallel to direct cortico-cortical projections[45-47]. This motif is modular, such 

that primary inputs can be processed and handed-off to downstream thalamocortical loops 

involving neurons in higher-order nuclei. Importantly, synapses on thalamic relay cells are 

numerically dominated by modulators (i) rather than their “driving” inputs (ii), suggesting rich 
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complexity of intrathalamic processing that has rendered the earliest notions of the thalamus as a 

mere waystation obsolete[48]. Indeed, the organization of this canonical circuit inspired several 

co-existing theories of thalamocortical function that each have accrued evidence in their favor. 

 

Two fundamental functions of the thalamus may be to both modulate and mediate the transfer of 

information between cortical areas[49-54]. In fact, thalamocortical projections may be just as 

important to information transfer between cortical areas as direct cortico-cortical projections[55]. 

For example, chemically silencing the thalamus can prevent the propagation of activity from 

primary to secondary somatosensory cortices, suggesting the cortico-thalamo-cortical 

(transthalamic) route is critical in this process[56]. In other words, different cortical areas may 

have difficulty “speaking” to each other without the mediating functions of the thalamus. 

Further, the concept of a thalamic mediator for cortico-cortical information processing points to a 

broader functional role of the thalamus as an enabler of “communication through 

coherence”[57]. The basic idea here is that the spiking activity from upstream regions (e.g., from 

both thalamus and cortex) should be synchronized to promote post-synaptic summation and 

activation of neurons at the next stage of processing, so thalamic circuits may help entrain 

activity across those upstream sites to coherent rhythms. In addition, downstream regions may be 

more receptive to that information at particular phases within an oscillatory cycle so, in similar 

fashion, the thalamus may promote coherence across efferent and afferent cortical areas to 

facilitate their direct interactions[58,59]. Another function of the thalamus may be to serve as a 

gate for subcortical and cortical information processing. This role is supported by observations in 

nuclei such as the LGN, which appears to minimally alter its input (from the retina, in this case) 

before passing that information along to cortex (here, visual cortex)[60], and whose inputs are 



 
 

 11 

Information Classification: General 

blocked from cortical access during particular states such as sleep[61,62]. Thalamic gating of 

information may also play a role during awake states: for example, thalamocortically-induced 

suppression in the neocortex can focus the receptive fields of sensory neurons[63,64].  None of 

these functions are mutually exclusive, and the extent to which different thalamic regions or 

circuit components contribute to each is a subject of ongoing investigation. 

 

2.2.2. Intralaminar and Midline Microcircuits 

The thalamus is likely key to the implementation of state transitions between levels or types of 

cortical arousal and can maintain those states through broad, course regulation of cortical 

activity[65-69]. This function is evident in various sleep stages and their distinct thalamocortical 

signatures. For example, the synchronous transition to “down” states across multiple cortical 

regions during slow-wave sleep is likely mediated by the midline thalamus[70]. Here, the 

thalamus appears to be the critical link between brainstem regions involved in arousal, primarily 

the ascending reticular activating system (RAS), and the cortex. This network serves as a 

synchronous, broad modulator of cortical processing, and a potential regulator of sleep, alertness, 

and consciousness[71-73]. So, in addition to being the gatekeeper for specific information trying 

to gain access to cortex, modulatory projections via the thalamus enforce cortical compliance 

with brainstem-derived state signals. 

 

2.2.3. TRN Microcircuits 

Thalamocortical functions reflect a complex interplay of excitatory and inhibitory feedback and 

feedforward interactions, and our understanding of these dynamics continues to evolve. Central 

to this interplay is the TRN, which dynamically modulates the gain of thalamic neuronal activity 
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in addition to regulating oscillations[74]. Trans-reticular circuits are generally 

topographically[75] and functionally[61] distinct, forming recurrent networks between regions of 

the TRN and the thalamic subdivisions they modulate, and connected cortical areas[76]. A key 

underlying feature of this circuit is the ability of TRN cells to adopt distinct tonic and burst firing 

modes. Rhythmic tonic spiking, which occurs when neurons are depolarized, is typically the 

dominant state during wakeful and attentive states. In contrast, hyperpolarized reticular neurons 

fire in bursts, a pattern characteristic of sleep. The switching of thalamocortical cells in the TRN 

between tonic and burst modes is mediated by T-type calcium channels that are inactivated at 

resting membrane potentials and dependent on relatively long periods of hyperpolarization to de-

inactivate[77]. The frequency of these cycles possesses notable clinical interest, because their 

duration (approximately 300 ms) matches the periodicity characteristic of absence seizures and 

other epilepsies with stereotyped spike-wave discharges[78]. 

 

In the context of the proposed roles for the thalamus in directing cortical states that are largely 

defined by oscillatory patterns, the TRN plays a critical role in the synchronization of thalamic 

and cortical neurons[79]. Reticular neurons generate inhibitory post-synaptic potentials in TC 

cells, which can prime these relay neurons for post-inhibitory rebound spikes. TC neurons, when 

in “burst mode” following sustained periods of inhibition, can fire periodic volleys that 

synchronize to delta frequencies (1-4 Hz), while TC-TRN circuits generate spindle oscillations 

(7-14 Hz) in the cortical regions onto which they project[80-84]. These rhythmic bursts of output 

feed back to the TRN, causing recurrent activation that sustains oscillations in physiologic states 

and is aberrant in pathologic ones[85,86]. Specifically, a higher degree of coherence between 

TRN and cortex results in the emergence of characteristic 3-Hz spike-wave oscillations rather 
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than normal spindles, suggesting a potential functional target for suppressing the spread of these 

discharges[87]. Indeed, suppression of spike-wave activity in a genetic rat model of absence 

epilepsy disrupted cortico-reticular synchrony, while firing patterns of thalamic relay neurons 

were unaffected[88]. 

 

2.2.4. Thalamic Triads 

Recent work has highlighted an important local thalamic circuit component for non-TRN-

mediated inhibition within thalamic nuclei consisting of local GABAergic interneurons that 

inhibit relay cells. The motif at these synapses has been dubbed a thalamic “triad”, stemming 

from the unique functional and structural arrangement of interneuron dendrites, TC dendrites, 

and incoming axonal input (Figure 3)[89]. These interneurons comprise around 20% of the total 

neuronal population in the rodent dorsal thalamus and around 35-40% in that of humans[90], 

suggesting a more prominent role in thalamic processing in humans. In the triad a local feedback 

circuit is triggered by glutamate release onto AMPA receptors present on interneuron dendrites, 

which then release GABA onto TC relay cell dendrites, inhibiting the same segments of those 

TC dendrites receptive to incoming glutamatergic activation by the thalamic inputs[91]. 

 

Interestingly, stimulation of the optic tract can produce synaptic responses in these interneurons 

without corresponding activity in “classic” relay neurons, suggesting a unique and critical role 

regulating thalamic circuit dynamics[92]. Their role within thalamic circuits is likely 

modulatory, and they may contribute to functions such as gain control via dynamic conductance 

regulation[91]. However, despite being perhaps as critical to network regulation as the TRN[93], 

these intrinsic interneurons have only recently been appreciated. They are thus less-well studied 
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than their principal neuron counterparts, so their specific function and recruitment during 

thalamic stimulation are only just beginning to be explored[94].  

 

2.2.5. Functional Implications of Thalamocortical Interconnectivity 

Beyond its modulatory influence, the thalamus likely contributes to cortical processing at a finer 

scale as well. The feedforward CT projection from layer V may provide an “efference” copy of 

upstream cortical information to a downstream cortical target via the transthalamic route, thereby 

supporting predictive coding[28,95,96] in which ongoing experience is compared to learned 

expectations. In this and other ways, the thalamus may be critical for a variety of routine cortical 

processing and may enable higher-order cognitive functions such as working memory[97], 

cognitive control[98], and behavioral flexibility[99]. In fact, atrophy of higher-order thalamic 

nuclei as well as functional alterations in MD-prefrontal connectivity have been implicated in 

neurodevelopmental disorders such as schizophrenia and may contribute to associated symptoms 

including motor dysfunction, psychotic behavior, and impaired memory[100]. 

 

These perspectives on thalamic function relate directly to the potential mechanisms by which 

thalamic modulation may influence seizures. If the thalamus acts as a gate for information access 

to the cortex via excitatory inputs, closing this gate may help normalize the balance of excitation 

and inhibition. If the thalamus regulates cortical state, perhaps altering or resetting that state 

using thalamic modulation (e.g., by targeting intralaminar or midline nuclei, selecting a stimulus 

protocol tuned to activate local thalamic interneurons, or broadly activating TRN) may interrupt 

seizures or at least engender a state that is less conducive to their sustenance. If the thalamus 

enables or facilitates cortico-cortical communication, then interrupting this communication may 
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interrupt the propagation of seizures. We will return to these themes when considering the 

evidence for the involvement of the thalamus in epilepsy. 

 

2.3. Potential Thalamocortical Circuit Dynamics of Seizures 

The synaptic and circuit properties of thalamocortical networks offer a plausible narrative to 

explain observations that stimulating the thalamus peri-ictally may be therapeutic[101,102]. 

Animal studies have demonstrated that thalamocortical relay cells exert more excitatory drive 

onto inhibitory neocortical interneurons than onto excitatory cells[103,104]. Thalamically-

derived signals onto cortical synapses are also precisely tuned and synchronized[105], such that 

few inputs are required to drive those interneurons. Indeed, derangements of these dynamics 

could potentially be epileptogenic[106] and, conversely, harnessing these circuit dynamics could 

potentially offset the cortical hyperexcitability characteristic of seizures. Additionally, there is a 

calibrated counterplay between cortico-thalamo-cortical and cortico-cortical tracts[107]. The 

former, transthalamic pathway more effectively activates the feedforward inhibitory circuit than 

the latter “horizontal” one, suggesting that thalamic influences on cortical activity may be 

stronger than even direct cortical influences, again illustrating the likely significant modulatory 

utility of thalamocortical pathways. 

 

TRN circuits offer another key node for controlling thalamocortical dynamics. Because the TRN 

provides widespread feedforward and feedback regulation of CT-TC pathways, activation of 

TRN cells can dramatically alter cortical activity and rhythms[108,109]. Moreover, the 

distinctive bimodal cellular dynamics of TRN activity, switching between tonic and burst firing 

modes, may be biased by electrical stimulation for immediate effects, and may produce longer-
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term effects by influencing thalamocortical plasticity. Therefore, stimulation targeting core 

thalamic nuclei may also invoke TRN mechanisms for additional or more potent cortical effects. 

 

3. Thalamic Influence in Epilepsy 

Whether ictal activity is initiated, propagated, or merely reflected by the thalamus has been 

debated and studied ever since thalamic neural activity has been associated with seizure 

discharges[110-113]. Cortical network hyperexcitability associated with seizures may be 

contextualized within particular thalamocortical circuits and can even be mapped onto specific 

nuclei in some instances. So far, most attention has been focused on the anterior nucleus and 

centromedian nuclei. However, more recent work has begun to examine other nuclei such as the 

pulvinar group as well as the TRN, and has explored more precise mechanisms of seizure 

development in TC circuits. 

 

3.1. Evidence for Thalamic Involvement in Seizures 

3.1.1. Thalamic Involvement in Seizures: Temporal Lobe Epilepsy 

Studies of macroscale volumetric changes in temporal lobe epilepsy (TLE) have shown that 

thalamic atrophy is the most common extratemporal structural abnormality[114,115]. Reduced 

diameter of a related medial limbic circuit component – the fornix, which provides input to the 

ANT via the mammillary bodies – is also commonly observed[116].  Atrophy of the fornix is a 

potential risk factor for persistent postoperative seizures[117], particularly within the subset of 

patients with mesial temporal sclerosis[118]. Likewise, bilateral thalamic atrophy, in addition to 

atrophy of the contralateral hippocampus, was associated with persistent postoperative seizures 

in subjects with medial TLE[119]. 
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In addition to localized anatomical changes, seizures may also produce changes in functional 

connectivity. Neuroimaging measures of functional connectivity between thalamus and cortex 

have suggested correlations with epilepsy, though their clinical applicability is unclear. For 

example, relatively increased functional connectivity between the thalamus and hippocampus 

and decreased functional connectivity between the thalamus and entorhinal cortex has been 

proposed to localize seizures to the left and right hemisphere, respectively[120]. In addition, 

increased functional connectivity between the thalamus and brainstem RAS has been observed 

via fMRI in TLE, and was at least partially normalized after anterior temporal lobectomy or 

selective amygdalohippocampectomy[121].  

 

Robust anatomical and neurophysiological data support the involvement of the ANT, which 

closes the medial limbic circuit via the mammillothalamic tract (Figure 4), in TLE.  Indeed, 

among the earliest clues suggesting a link between the thalamus and epilepsy was the 

observation that lesions of the mammillothalamic tract protected guinea pigs from 

pentylenetetrazol(PTZ)-induced temporal lobe seizures[122,123]. A rodent model of electrical 

stimulation-induced focal limbic seizures demonstrated that the ANT may exhibit seizure 

activity prior to cortex with a high degree of accuracy and consistency[124]. Such an 

observation, if generalizable to human TLE, may motivate a more primary role for thalamic 

seizure detection and modulation in at least this form of epilepsy[125]. Other thalamic nuclei that 

connect with broader regions of the temporal lobe, particularly the PuM nucleus (Figure 5), have 

also been shown to be electrographically recruited by seizures, following initiation in 

cortex[126-129]. 
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3.1.2. Thalamic Involvement in Seizures: Generalized Epilepsies 

While thalamic involvement in focal epilepsies may be regarded as secondary to cortical 

pathology, the thalamus may in fact be a central node in primary generalized epilepsies. In 

contrast to relay or “core” nuclei, primary generalized epilepsies have uniquely implicated the 

intralaminar nuclei, particularly the CMT. Epileptiform activity in the CMT was observed during 

generalized seizures in adults and children with Lennox-Gastaut Syndrome (LGS)[130-132]. 

Intraoperative iEEG recordings from eight Lennox-Gastaut patients found 86% of generalized 

paroxysmal fast activity events were seen at both the site of cortical onset and the CMT. 

Furthermore, activity in multiple frequency bands appeared to propagate from cortex to thalamus 

during periods of ictal activity, implying propagation of seizures through the thalamus[132]. 

However, a recent case series suggested that the CMT may in fact lead ictogenic activity in 

cortex in generalized epilepsy and that the nucleus itself has independent ictal discharge[133]. 

 

The thalamus exhibits early epileptiform activity also in absence epilepsy[134,135]. A 

substantial body of research supports a cortico-reticular basis of SWDs characteristic of this form 

of epilepsy[136-138]. While still contested, the thalamus is more likely to be an early node in the 

spread of SWDs rather than their primary driver, which rather may be deep layers V and VI 

cortical neurons[139]. Nonetheless, although seizure activity may originate in those cortical 

circuits, immediate pathologic 3-8 Hz spike-wave discharges can be seen in the thalamus even 

before seizure activity generalizes to the rest of the cortex[138,140,141]. Additionally, rodent 

models of absence epilepsy have demonstrated that individual seizures could be forecasted by 

low-dimensional, pre-ictal neural dynamics in the higher-order thalamus, but not the cortex[142], 
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suggesting the thalamus may be critical to transform a local ictal signal into a generalized 

absence seizure. 

 

TRN circuits have been studied extensively in animal models of generalized seizure 

pathogenesis. Without the GABAergic reticular nucleus, unconstrained excitatory activity in 

these loops would freely amplify, and so manipulation of TRN responses may be clinically 

relevant[143]. Because indirect cortico-thalamic inhibition via the TRN usually outweighs direct 

corticothalamic excitation, loss of normal neocortical activation of the TRN can result in 

downstream disinhibition of the dorsal thalamus[87]. Consistent with this, experimental models 

of generalized-absence epilepsy in mice revealed pathologic synchrony via corticothalamic 

transmission when normal TRN recruitment was weakened by altered ion channels (Gria4)[144]. 

Similarly, knockout of Scn8a sodium channels in TRN neurons caused seizures by impairing 

tonic firing and recurrent desynchronization mechanisms[145,146]. These observations suggest 

restoring or amplifying TRN-mediated inhibitory mechanisms could promote seizure 

control[147-149]. 

 

3.2. Preclinical Evidence for Seizure Control via Thalamic Stimulation 

Preclinical work in animal models, mostly focusing on the ANT, has demonstrated the ability of 

thalamic modulation to potentially halt seizures. Several different animal models over the last 

three decades have investigated the efficacy of high-frequency stimulation (and lesioning) of the 

ANT in suppressing chemically-induced seizures. High frequency (100 Hz) stimulation of the 

ANT was shown to have an analogous effect to lesioning the mammillothalamic tract, protecting 

against PTZ-induced seizures, whereas low frequency (8 Hz) stimulation was 
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proconvulsant[150]. In a nonhuman primate model of MTL seizures, 40 Hz (as opposed to high-

frequency 130 Hz) stimulation was successful at reducing the number of seizures, particularly 

when coherence between ANT and the hippocampus existed at lower frequencies[151]. These 

results parallel those of a pilocarpine model of secondary generalized seizures, where bilateral 

ANT thalamotomies completely suppressed seizures[152] and ANT stimulation had differing 

anticonvulsant effects depending on stimulation current and frequency[152,153]. Likewise, 

electrical stimulation of the ANT suppressed kainic-acid induced focal limbic[154] and 

cortical[155] seizures. To a first approximation, electrical stimulation (particularly at higher 

frequencies) has effects similar to lesions in the context of other disorders (e.g., Parkinson’s 

Disease, Essential Tremor)[156-159], and so these results in the case of epilepsy fit within that 

general pattern. 

 

Optogenetic studies that more precisely activate or inactivate particular cells have yielded more 

detailed information about how thalamic modulation might promote seizure control. For 

example, closed-loop optogenetic activation of principal relay cells in the rat ventrobasal nucleus 

(analogous to the human ventral posteromedial and posterolateral complex) effectively 

interrupted seizures following cortical injury (e.g., stroke)[148]. Meanwhile, optogenetic 

activation of the reticular nucleus suppressed cortical seizures, in keeping with the importance of 

the reticular nucleus in constraining activity in thalamocortical loops[160]. Notably, 

optogenetically switching TC neurons between phasic and tonic firing modes modulated absence 

seizure activity[101]. Specifically, the synchronous phasic state was required for seizure activity 

and switching to the tonic state quickly halted absence seizures. 
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Stimulation of the intralaminar nuclei may be particularly useful for modulating arousal, which 

may be impaired during or after seizures. In a mouse model, 40-100 Hz optogenetic stimulation 

of the intralaminar nuclei aroused animals from sleep into a waking state, with widespread 

activation of forebrain structures[161]. Similarly, in non-human primates, electrical stimulation 

of the intralaminar nuclei reversed propofol-induced unconsciousness, with concomitant reversal 

of electrophysiologic features of anesthesia[162]. These results suggest that, in addition to 

modulating seizures themselves, stimulation may be used palliatively to avert the debilitating 

loss of awareness in patients with seizures that impair consciousness[163]. 

 

4. Clinical Thalamic Neuromodulation for Epilepsy 

4.1. Current Therapeutic Options 

In recent years, neuromodulation for epilepsy has become increasingly routine. Two forms of 

neuromodulation are available: open-loop modulation via deep brain stimulation (DBS) and 

closed-loop, “responsive” neurostimulation (RNS). The former is built upon standard, pre-

existing DBS devices to modulate seizure-related circuits in a continuous manner, whereas the 

latter uses a novel neurostimulator device intended to record and disrupt seizures when they 

occur. The efficacy of DBS for the treatment of DRE has been supported by several influential 

RCTs including, but not limited to, the thalamus[15,164-170], while the largest study providing 

Class I evidence of RNS efficacy was in the context of cortical stimulation for partial onset 

seizures in 2011[171]. Currently, there is only one commercially available closed-loop system 

for RNS in epilepsy[172,173]. Though there have been pivotal studies of responsive cortical 

stimulation[174,175], there have not yet been large clinical trials of RNS targeting the thalamus. 

Mechanistically, DBS is generally associated with chronic network disruption while RNS is 
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designed for real-time seizure detection and termination, although their precise physiologic 

effects and overall advantages are still debated. 

 

4.2. Clinical Neuromodulation: Temporal Lobe Epilepsy 

TLE is one of the most common forms of intractable epilepsy and the most common form of 

focal epilepsy[176]. Furthermore, the ANT, which is connected to medial-limbic cortex, has 

been definitively implicated in the pathogenesis of TLE seizures, as described above,[177] and 

was among the first brain structures to be stimulated for the treatment of epilepsy[178,179] 

(Figure 2). Since then, ANT stimulation in patients with predominantly temporal lobe seizures 

has been found to be more successful than for other seizure types[170]. 

 

Initially, multiple, relatively small case series (<5 subjects) of successful ANT DBS were 

presented in patients with partial-onset seizures both with and without secondary 

generalization[180-183]. The early clinical successes of ANT DBS for epilepsy culminated in 

the Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy (SANTE) trial, which 

tested the therapeutic efficacy of bilateral ANT stimulation[164]. One month after implantation, 

patients were blindly assigned to sham stimulation or active stimulation groups for three months, 

followed by nine months of open-label active stimulation for all subjects[170]. Both groups 

experienced implantation-related improvement at one month, with a 20% reduction in seizures. 

However, after one month of stimulation, the active stimulation group began to experience 

greater improvements in seizure reduction while the sham stimulation group plateaued. There 

was no statistically significant difference between these two groups until the third and final 

month of blinded stimulation. After initiation of stimulation in both groups at one year, the 
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SANTE investigators continued to track long-term outcomes. Nearly half of subjects reported an 

improvement in quality of life and 73% of subjects reported being satisfied with the therapy. The 

improvement in seizure frequency and quality of life, in addition to longer-term, post-trial data 

submitted the Food and Drug Administration (FDA), resulted in FDA approval for ANT DBS in 

2018. 

 

A few small series (<5 subjects) describe the use of RNS in ANT for the treatment of epilepsy, 

usually using cortical electrode grids for detection and thalamic depth electrodes for stimulation. 

Unilateral ANT RNS was reported as successful in each of three patients with multifocal 

epilepsy[184]. Further, there was a 90-95% reduction in seizures using RNS in a patient with 

childhood-onset genetic generalized epilepsy who had also received anterior callosotomy[185]. 

The literature on RNS stimulation specifically for pediatric patients is likewise limited to small 

case series of one or two subjects[186-188]. 

 

The PuM has been implicated in focal seizures in patients with motor-premotor epilepsy and 

temporal lobe epilepsy[126]. In an evoked potential study of patients undergoing depth electrode 

monitoring for epilepsy, 80% of temporal neocortical contacts responded to PuM stimulation 

while the response rate of the mesial temporal region was only 34%. This difference suggests 

that electrical neuromodulation of the PuM may preferentially target the spread of mesial TLE to 

neocortical sites, or may have second-order, indirect effects on mesial TLE itself[189]. Recent 

data have also suggested that stimulation of the PuM in patients with TLE who are not typically 

candidates for resection can help terminate seizures and reduce impairment in 

awareness[190,191]. Transient regional diffusion-weighted MRI hyperintensities have also 
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implicated the pulvinar in focal status epilepticus for various seizure types[192], including 

evidence that the medial pulvinar is a relay node specifically for temporal status epilepticus[193]. 

With the support of further clinical trials, PuM-targeted neuromodulation may eventually follow 

a similar trajectory as the ANT for the treatment of medically-intractable TLE. 

 

“Insertion” effects such as transient edema or more durable micro-lesions may account for some 

fraction of these reported therapeutic benefits[194]. Frank lesions of the thalamus were 

investigated as a therapeutic option in patients with epilepsy as early as 1967[148,195]. More 

recently, when directly compared in non-randomized groups, both stereotactic anterior 

thalamotomy and ANT stimulation were found to be effective for seizure control in frontal and 

temporal lobe epilepsy[196]. Consistent with this, therapeutic insertion effects have been well-

documented[180-182,197,198], though SANTE did eventually show a clear benefit of prolonged, 

active stimulation[164].  

 

4.3. Clinical Neuromodulation: Generalized Epilepsies 

Multiple studies have implicated the CMT as a nucleus that can be safely[168] and effectively 

targeted for the treatment of various types of primary- or secondary- generalized seizures 

(Figure 4)[168,199]. In an early series of five patients, CMT stimulation markedly decreased the 

frequency of generalized tonic-clonic seizures[200,201]. CMT spike-wave complexes were 

found even to precede cortical generalization in passive recordings[130]. In a more recent 

clinical trial, six patients with generalized epilepsy undergoing bilateral DBS at 60-130 Hz 

experienced >50% initial improvement in seizure frequency, with 5 of 6 patients being seizure 
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free or with 67-80% reduced seizures at long-term follow-up[202]. However, CMT stimulation 

was not effective for the five included subjects with frontal lobe epilepsy. 

 

A potentially key role for the thalamus in Lennox-Gastaut syndrome (LGS) was suggested by 

rapid recruitment of the CMT in some patients[132]. Early evidence supported potentially 

effective control of atypical absence seizures characteristic of LGS by targeting the CMT, with 

reduction in seizure frequency of >87%[203]. As LGS is a uniquely complex disorder with high 

treatment-resistance and morbidity, these patients may stand to benefit substantially from 

thalamic neuromodulation. Thus, the recent ESTEL (Electrical Stimulation of Thalamus for 

Epilepsy of Lennox-Gastaut phenotype), a randomized clinical trial, demonstrated reduced 

electrographic seizures with bilateral CMT DBS in a cohort of 19 patients with LGS[204]. While 

outcomes were limited to three months, both diary-recorded and electrographic seizures were 

less frequent compared to controls. 

 

4.4. Clinical Neuromodulation: Other Types of Epilepsy 

Frontal lobe epilepsy, the second most common focal epilepsy, accounts for about one-quarter of 

medically refractory cases[205] and is often included in clinical trials such as SANTE. Yet 

evidence of abnormal frontothalamic correlates in epilepsy remain vague and 

inconclusive[206,207].  In the SANTE trial, ANT stimulation did not significantly reduce 

seizures from the frontal (as well as parietal and occipital) lobes[164]. Likewise, in a trial of 

CMT stimulation that included five patients with frontal lobe epilepsy, only one had clinically-

reduced seizures[202]. A recent case report of a patient with bilateral frontotemporal epilepsy 

demonstrated a meaningful decrease in seizure frequency and intensity after RNS of the CMT 
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complex combined with VNS, though improved awareness during seizures was perhaps the more 

notable result[208]. Interestingly, the degree of thalamic involvement has been linked to poorer 

postsurgical outcomes in a stereo-electroencephalography (SEEG) study involving a diverse 

series of patients comprising multiple epilepsy categories (TLE, “temporal plus”, bitemporal, 

opercular, motor-premotor)[209]. These preliminary observations suggest there may be a role for 

thalamic neuromodulation in non-temporal focal epilepsies, but much work remains to be done. 

 

Moreover, there is a paucity of laboratory and clinical studies investigating the thalamus in 

epilepsies of parietal, occipital, insular, and multifocal origin as well as in persistent seizures 

following trauma, infection, and stroke. Closed-loop CMT stimulation demonstrated clinical 

efficacy in seven patients with refractory focal epilepsy involving various neocortical 

regions[194]. That study showed an 80% mean reduction in disabling seizures and 67% 

reduction of all seizures. Stimulation was initiated in response to 3-5 Hz spike-wave thalamic 

discharges. In another trial, detection of seizure onset in the CMT by RNS was characterized by 

increasing amplitude alpha waves, and these electrographic signals correlated with clinical 

seizure presentation[210]. There were relatively few reported adverse events across studies, 

although careful selection of parameters was noted to be important for minimizing paresthesias. 

Interestingly, targeting the anterior ventrolateral CMT slightly more dorsally led to >50% 

reduction in 7 of 10 multilobar epilepsy patients
139

. That such slight changes in target might have 

dramatic therapeutic effects highlights both the promise and current peril of thalamic 

neuromodulation for epilepsy: while there are frequent reports of dramatic benefits, without the 

requisite attention to underlying seizure mechanisms and without sufficient knowledge of the 

relevant thalamic circuitry, inconsistent outcomes may be observed, potentially leading to failed 
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or inconclusive studies that dampen enthusiasm for this approach, or render it a poorly-reasoned 

“hit or miss” strategy much like VNS. 

 

5. Future Directions 

5.1. Improving Peri-Ictal States of Impaired Awareness 

Prolonged periods of cognitive impairment and loss-of-awareness (LOA) during and after 

seizures are major sources of seizure-related morbidity and often significantly impair quality of 

life[211,212]. The key role of the thalamus linking cortex with brainstem arousal networks 

suggests leveraging thalamocortical circuitry to improve peri-ictal states of impaired 

consciousness is a reasonable goal, and animal studies (described above) provided early proof-

of-concept. In humans, the presence of focal aware versus focal impaired seizures in TLE has 

been associated with constitutive changes in thalamic-related anatomy, functional connectivity, 

and electrophysiology[121,191], bolstering the case that thalamic-directed neuromodulation may 

have a role in counteracting peri-ictal LOA. In cases where seizures cannot be eliminated or 

substantially reduced, this potential benefit may nonetheless be of significant value and has 

motivated the ongoing Stimulation of the Thalamus for Arousal Restoration in Temporal Lobe 

Epilepsy (START) Trial (NCT04897776). 

 

5.2. Responsive Neurostimulation in the Thalamus 

From a graph theory perspective, the thalamus is likely to have the highest connectivity of any 

node in the seizure network due to its extensive inputs and outputs[210]. RNS systems typically 

detect ictal activity from electrocorticography (ECoG) strips or depth electrodes. Because 

seizures can originate in areas of cortex unsampled by ECoG or depth electrodes, thalamic 
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recordings may more reliably detect the onset of seizure activity due to the presence of a 

thalamic focus or propagation through convergent cortico-thalamic loops. However, while the 

thalamus may therefore be a useful “choke point” for seizure control, how that compares to 

direct stimulation of the seizure onset zone, which is typically regarded as the most effective 

neuromodulatory intervention[148,164], has yet to be established. Further, RNS provides a 

unique opportunity for chronic ambulatory recordings of seizures and potential network changes 

in “real-life” environments, especially if the volume of data that can be stored is expanded. 

 

The mechanism by which RNS treats epilepsy stems not only from its unique capacity for 

closed-loop stimulation, but also from its chronic network related effects involving multiple 

nodes. As such, the thalamus is an intuitive target for both recording and stimulation due to its 

role in modulating cortico-cortical synchrony and coherence. An analysis of ECoG recordings 

from 11 RNS patients found no association between improved long-term clinical outcomes and 

direct interruption of pre-ictal or ictal activity but demonstrated significant relationships between 

those outcomes and indirect effects including spontaneous ictal inhibition, frequency modulation, 

and ictal duration modulation[213]. Moreover, a study across three large epilepsy centers showed 

that preoperative iEEG metrics of network synchronizability could predict the likelihood of 

successful RNS therapy, as this may index the “perturbability” of the epileptic network[214]. 

Notably, a large decrease in synchronizability at the time of seizure onset was found to be 

associated with poor RNS outcomes. This provides evidence that network stabilization in the 

long run is a primary mechanism of seizure palliation, and that thalamic neuromodulation may 

offer a scenario to fully leverage the advantages of RNS. 
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5.3. Novel Thalamic Circuit Targets 

The ANT and CMT are thus far the most clinically relevant nuclei, followed by the 

pulvinar[215]. A few nuclei in the thalamus are sometimes designated as “limbic” nuclei, a 

group which most notably includes the ANT and sometimes the PuM[216,217]. While this 

grouping is somewhat fuzzy, these limbic nuclei may roughly be seen as directly participating in 

seizure hyperexcitability, particularly for TLE; while intralaminar nuclei may play the primary 

role in the seizure-associated sequelae and morbidity, especially following generalized 

seizures[124]. Evidence for the utility of other thalamic nuclei, so far, is dominated by animal 

studies with limited preliminary trials on the human ANT, CMT, and pulvinar. Nonetheless, due 

to the heterogeneity of seizure types, the door should remain open to a variety of potential 

thalamic control points and approaches. The specific targeting within these nuclei may have 

varying efficacy at treating each type of epilepsy, so there remains much to answer with regards 

to the ideal target that can provide the best outcomes. Additionally, to what degree of precision 

RNS will have in targeting specific regions of these nuclei, and what the parameters will provide 

the best seizure freedom with the least side effects are still uncharted. 

 

5.4. “Other” Thalamic Nuclei 

5.4.1. Central Lateral Nucleus 

The central lateral (CL) nucleus appears to be a significant control point for improving postictal 

arousal states (see START trial, NCT04897776). DBS targeting the CL nucleus improved 

functional recovery after traumatic brain injury[218]. Further, CL stimulation-induced cortical 

slow-wave activity in rats was notably distinct from neuronal population in other thalamic 

nuclei[124]. Building on this work, the same group demonstrated that CL stimulation in the 
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postictal period prevented cortical slow waves and was associated with performance 

improvement in a shock-escape task[219]. 

 

5.4.2. Midline Nucleus Reuniens 

Physiologic evidence of thalamic midline nucleus reuniens involvement in seizures was 

demonstrated in rat models of medial temporal lobe epilepsy[220]. Although relatively small, the 

midline nucleus reuniens mediates connections between specific hippocampal structures (CA1) 

and medial prefrontal cortex[216,221,222]. While limited in its conclusions, an SEEG study of 

three patients demonstrated recruitment of the midline thalamus in seizure initiation[223]. 

 

5.4.3. Mediodorsal Nucleus 

While its role is not yet well-defined, the mediodorsal (MD) thalamic nucleus may be involved 

in performance on several cognitive tasks[224]. Decreased connectivity on fMRI between the 

MD nucleus and multiple cortical and subcortical structures was found in patients with idiopathic 

generalized epilepsy[225]. While evidence for CMT stimulation for treating IGE significantly 

exceeds that for the MD, the heterogeneity of generalized epilepsies suggests that increased 

knowledge of precise connectivity disturbances may yield more specialized targets[226].  

 

5.4.4. Parafascicular Nucleus 

The parafascicular (Pf) nucleus is inextricably linked to the CM nucleus. Focus on the Pf nucleus 

reveals a strong association with the basal ganglia and subcortical structures. Specifically, nigral 

projections to the rat Pf nucleus via layers of the superior colliculus were exploited in control of 

both genetic absence and temporal lobe epilepsy models[227,228]. While the precise 
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physiological effects may not have human parallels, such research provides a possible basis for 

neuromodulation of subcortical-cortical networks. 

 

6. Conclusion 

The thalamus has become an increasingly attractive target for neuromodulation for drug-resistant 

epilepsy, including for types of epilepsy that have not traditionally been surgically addressed. 

Ongoing studies revealing the structure and function of various thalamic nuclei and their 

responses to modulation provide an ever-growing foundation for well-informed interventions.  

The thalamus is likely to become a critical and routinely utilized target for network-based seizure 

treatment. 

 

7. Expert Opinion 

While there is increasing awareness of the potential value of thalamic neuromodulation for the 

treatment of epilepsy, and clinical trials are beginning to formally assess some specific strategies 

beyond established ANT DBS, such as START for maintenance of awareness through seizures 

and the ESTEL trial for LGS, the status of thalamic neuromodulation in routine surgical epilepsy 

practice is controversial. Formally, so long as the seizures are believed to be focal (with no more 

than 2 known foci), thalamic RNS is technically “on-label” in the U.S. Nonetheless, there is 

debate among clinicians about whether there are sufficient data to warrant thalamic implantation. 

Here, we briefly discuss a few increasingly utilized strategies we believe are representative of the 

current status of thalamic neuromodulation. 

 

7.1. Augmentation of Cortical Neuromodulation with Thalamic Leads 
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In “traditional” RNS, the goal has been to place the lead(s) in or as near to the cortical seizure 

onset zone as possible. The success of that approach is implicitly tied to the accuracy of that 

localization and the breadth of the target. In situations where the onset zone is somewhat 

ambiguous or known to be broad, some groups may consider augmentation of a cortical RNS 

lead with a thalamic lead. The hope, here, is to address the cortical target in the typical direct 

fashion as well as indirectly via the thalamus. There are as yet no adequate clinical studies to 

determine the true value of this approach, but the premise is sound. The alternative would be to 

place a second cortical lead, but often there is no principled reason to choose a secondary cortical 

site, whereas a thalamic implantation can be grounded at least in the knowledge of 

corticothalamic anatomy and physiology. Therefore, unless there is a clearly more suitable 

secondary cortical target, the choice of an appropriate thalamic nucleus (e.g., ANT for temporal 

lobe epilepsy or CM for frontal lobe epilepsy) is likely technically and ethically justifiable. 

 

7.2. Bilateral Thalamic Neuromodulation 

7.2.1. Bilateral Bi-focal Epilepsy 

Bilateral epilepsy with two known foci is best exemplified by the relatively common scenario of 

bilateral mesial temporal lobe epilepsy. Typically, clinicians may implant bilateral hippocampal 

RNS leads or bilateral ANT DBS leads. The choice between these two approaches derives 

primarily from the preferences and experiences of a center’s clinical team, because there is as yet 

no direct head-to-head comparison of these techniques. One could reasonably substitute bilateral 

ANT RNS for DBS, giving up the possible benefit of more continuous stimulation but gaining 

the benefit of objective seizure tracking. The value of objective seizure monitoring can be 
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significant, both for the tuning of stimulation parameters and for the adjustment of medications. 

Therefore, that strategy could be reasonably selected with a sufficient rationale. 

 

7.2.2. Multi-focal Epilepsy 

When there are more than two foci, RNS becomes technically “off-label” in the U.S. Here, as 

with any decision to pursue an off-label approach, the relatively unknown value must be weighed 

against a patient’s need for seizure palliation. On the one hand, epilepsy can be debilitating and, 

under-treated, life-threatening. On the other, the implantation of deep leads into subcortical 

structures like and including the thalamus are routine in neurosurgical practice, and the potential 

risks are fairly well understood. Meanwhile, any cortical implantation strategy might be doomed 

to failure given a broad, multi-focal seizure pattern. Therefore, if the patient and clinical team are 

sufficiently motivated and informed, and given the increasing availability of data demonstrating 

the likely benefit of at least some forms of thalamic neuromodulation for seizure mitigation, this 

approach could also be considered reasonable and worthwhile. 

 

7.3. Thalamic Neuromodulation for the Treatment of Generalized Epilepsy 

Primary generalized epilepsies are not typically regarded as just an elaboration of a focal seizure 

pathology, but rather as a relatively distinct entity[229], and one that has not traditionally been 

subject to neurosurgical intervention. To the extent that one perceives generalized epilepsy as a 

fundamentally different disease, neurosurgical intervention may appear wholly novel and 

experimental. Conversely, the fact that generalized epilepsies may arise from a thalamic circuit 

mechanism, the rationale for thalamic neuromodulation would seem more intuitive and 

convincing. Early studies suggest there may be significant value of thalamic stimulation for 
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generalized epilepsy[188,230,231], but larger and more controlled studies are just getting 

underway. Again, a balanced treatment of a patient’s need, the possible benefits, and the 

potential risks will guide different groups in different directions based upon their own experience 

and comfort with this and similar approaches. In cases where there is a decision to proceed, at 

least retrospective data collection, including objective pre-active-RNS and post-active-RNS 

records, would benefit the community broadly. 

 

7.4. Local Field Potentials in Neuromodulation for Epilepsy 

Reliable neurophysiologic biomarkers for detection of the myriad seizure types and networks 

have thus far remained elusive[232,233]. In comparison, the study of chronic local field potential 

(LFP) recordings for closed-loop DBS in Parkinson’s disease (PD) has recently expanded 

dramatically and could potentially serve as a model paradigm[234]. Specifically, the study of 

LFPs in the context of PD has yielded information about what types of signals (e.g., beta-band 

synchronization) are most likely to be useful as control signals for closed-loop control of PD 

symptoms[235-238]. Analogously, neuromodulation devices for epilepsy with chronic recording 

ability may likewise allow us to examine LFPs for neural signatures of seizures and perhaps even 

their impending onset, to more effectively avert them[239,240]. Given the heterogeneity of 

seizure networks across individuals, these signatures may even be patient-specific, thus arguing 

for the importance of personalized closed-loop therapies. 

 

7.5. Thalamic Recordings Prior to Permanent Stimulator Implant 

The use of thalamic stereoencephalography (SEEG) to determine whether an individual’s 

seizures can, in fact, be detected may be useful to determine whether thalamic neuromodulation 
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is potentially feasible. Furthermore, multiple thalamic SEEG leads may be used to determine 

where, precisely, seizure-related signals are most prominent and thereby guide implantation of a 

permanent DBS or RNS lead. One might even consider a trial run of test stimulation in the 

epilepsy monitoring unit, though the proper measure of its effect (e.g., electrographic versus 

clinical seizures) is unknown and the value of that approach in the short term is highly uncertain. 

We would argue that if a team’s consensus is that an individual may benefit from a permanent 

thalamic lead for DBS or RNS, gathering additional information to maximize the value of that 

strategy can be worthwhile, though the potential risks associated with additional SEEG leads 

should be communicated.  
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