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To adapt successfully to our environments, we must use the outcomes of our choices to guide future behavior. Critically, we must be able
to correctly assign credit for any particular outcome to the causal features which preceded it. In some cases, the causal features may be
immediately evident, whereas in others they may be separated in time or intermingled with irrelevant environmental stimuli, creating a
potentially nontrivial credit-assignment problem. We examined the neuronal representation of information relevant for credit assign-
ment in the dorsolateral prefrontal cortex (dlPFC) of two male rhesus macaques performing a task that elicited key aspects of this
problem. We found that neurons conveyed the information necessary for credit assignment. Specifically, neuronal activity reflected both
the relevant cues and outcomes at the time of feedback and did so in a manner that was stable over time, in contrast to prior reports of
representational instability in the dlPFC. Furthermore, these representations were most stable early in learning, when credit assignment
was most needed. When the same features were not needed for credit assignment, these neuronal representations were much weaker or
absent. These results demonstrate that the activity of dlPFC neurons conforms to the basic requirements of a system that performs credit
assignment, and that spiking activity can serve as a stable mechanism that links causes and effects.
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Introduction
Credit assignment is the process that links the outcomes of our
choices with the responsible factors. For example, many of us

have had the experience of using trial and error to recall which
passcode works in a particular circumstance. Upon discovering
the successful entry, we may immediately review or mentally note
that information to recall it the next time. This is a critical mo-
ment, because appropriately assigning credit for that success to
the correct preceding event determines whether we have learned
from this experience, or if we’ll stumble through the same search
process the next time as well. More generally, properly assigning
credit for specific outcomes underlies our ability to infer causality
and make sense of our environment.

Credit assignment is necessary for any form of associative learn-
ing, but it is more challenging when the causal environmental feature
is ephemeral and so no longer present when the outcome is revealed
(this is the temporal credit-assignment problem) or when multiple
potentially relevant features are concurrently present (the structural
credit-assignment problem).
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Significance Statement

Credit assignment is the process by which we infer the causes of our successes and failures. We found that neuronal activity in the
dorsolateral prefrontal cortex conveyed the necessary information for performing credit assignment. Importantly, while there are
various potential mechanisms to retain a “trace” of the causal events over time, we observed that spiking activity was sufficiently
stable to act as the link between causes and effects, in contrast to prior reports that suggested spiking representations were
unstable over time. In addition, we observed that this stability varied as a function of learning, such that the neural code was more
reliable over time during early learning, when it was most needed.
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The dorsolateral prefrontal cortex (dlPFC), whose neurons
have been observed to respond selectively to relevant, attended
information (Rainer et al., 1998a; Everling et al., 2002; Lebedev et
al., 2004), as well as to maintain information over time (Fuster
and Alexander, 1971; Funahashi et al., 1993; Miller et al., 1996;
Rainer et al., 1998b; Markowitz et al., 2015), would seem likely to
have the basic, necessary properties for solving the structural and
temporal credit-assignment problems. Likewise, lateral PFC le-
sions are typically found to impair performance on tasks that
have in common the requirement to use information about
choice outcomes to guide future behavior (Dias et al., 1997;
Parker and Gaffan, 1998; Mansouri et al., 2007; Rossi et al., 2009;
Simmons et al., 2010; Rushworth et al., 2011; Kovach et al., 2012).
These deficits often do not conform straightforwardly to a “work-
ing memory” narrative, but they are consistent with a potential
role in credit assignment. Yet, the specific neuronal representa-
tions necessary for performing credit assignment, especially in its
more challenging forms incorporating temporal or structural
problems, have not been directly investigated in the PFC or else-
where. This alternative framework may be useful to understand
more precisely how these neuronal representations contribute to
behavior, especially in light of growing neurophysiological and
lesion evidence that PFC activity may not directly mediate simple
working memory (Lara and Wallis, 2014, 2015; Pasternak et al.,
2015). Therefore, to study the responses of individual dlPFC neu-
rons and populations of dlPFC neurons during learning, we de-
signed a task that invoked both the structural and temporal
credit-assignment problems.

Importantly, recent data suggest that neuronal activity in the
lateral PFC dynamically evolves such as to severely limit the
cross-temporal stability of representations (Meyers et al., 2008;
Sigala et al., 2008; Barak et al., 2010; Stokes et al., 2013). This could
be particularly problematic for the temporal credit-assignment
problem, where a stable representation of relevant information
over time is necessary so that reinforcement received when an
outcome becomes apparent can be applied to the same neural
ensemble that earlier signaled the causal features. However, that
previous work involved tasks that did not require active learning
or credit assignment at the time neurons were recorded and
mostly relied on “pseudopopulations” of neurons (not all neu-
rons considered by a particular cross-temporal decoder or corre-
lation matrix were actually recorded simultaneously). Therefore,
we focused on simultaneously recorded neural activity during a
learning task requiring credit assignment, seeking to understand
whether dlPFC activity can indeed provide the necessary infor-
mation—including a stable representation over time—for solv-
ing the credit-assignment problem.

Materials and Methods
Subjects and behavior. Two male rhesus macaques, M1 and M2, per-
formed the credit assignment and spatial tasks in a pseudorandom,
block-wise, and interleaved fashion, with �4 repetitions of any particular
block (correct cue or spatial location) in each individual session (Asaad
and Eskandar, 2011). The task required animals to maintain central fix-
ation as four cue objects were presented peripherally (500 ms), to hold
fixation through a brief (1 s) delay, and then to make a choice by saccad-
ing to one of the four locations where the correct cue had appeared (Fig.
1). Generic visual feedback for correct or incorrect choices (a green circle
or a red X) was then presented for 500 ms followed by automated juice
reward if correct. Because, in the main credit-assignment task, this feed-
back did not reveal which cue had been at the selected location, a chal-
lenging credit-assignment problem needed to be solved for learning to
occur. Animals learned which cue signaled the correct saccade target by
trial and error. Once the correct cue was learned and the animal had

performed an additional �40 –50 trials, a new block was begun in which
a different cue was designated correct, without any overt signal to the
animal. In contrast to this cue-learning task, in the spatial version of this
task, which the animals played on pairwise interleaved blocks, the correct
choice was determined solely by its spatial position, and not by the iden-
tity of the cue that had previously appeared at that location. In both tasks,
the arrangement of the cues varied randomly from trial to trial, but the
same four cues were used throughout any individual session. Unique
arrays of four cue pictures were chosen for each session from a pool of
�50 familiar stimuli (to limit potential perceptual learning about partic-
ular stimuli and to use session-unique combinations of those stimuli).

Because all trials within a session contained the same four pictures, an
animal’s attention to a particular cue was inferred through its correct
performance on a trial. Although individual trials could occasionally be
performed successfully by chance (25%), sustained high performance
depended on generally consistent allocation of attention to the correct
cue. Outcomes were sorted into four categories, as in our previous work
(Asaad and Eskandar, 2011), based on the current and prior trial’s out-
come: unexpected correct, expected correct, unexpected incorrect, and
expected incorrect. An outcome was considered unexpected if the prior
trial’s outcome differed from the current one. Monkeys M1 and M2
performed an average of 1019.1 and 963.5 correct trials (of 1281.1 and
1179.7 attempted trials without technical errors) per session over an
average of 23.4 and 22.6 blocks, respectively. M1 performed 33 sessions
and M2 performed 21 sessions.

The behavioral task was implemented in MonkeyLogic (Asaad and
Eskandar, 2008; Asaad et al., 2013; www.monkeylogic.org). Eye position
was monitored with an infrared tracking system (Iscan) at 120 Hz. Ani-
mals were always handled in accordance with National Institutes of
Health policies and those of the Massachusetts General Hospital animal
care and use committee.

Anatomy. To reconstruct recording locations, we relied upon a post-
implant MRI of each animal with vitamin E-filled fiducial arrays marking
specific recording trajectories. Each array was partitioned into discrete
three-dimensional (3D) volumes using the 3dclust function of AFNI
(Analysis of Functional Neuroimages) with a mask over the fiducial sig-
nals in the MRI (Cox, 1996). The resulting volumes were visualized in 3D
with SUMA (AFNI Surface Mapper; Saad et al., 2004). The center coor-
dinate of the array was calculated as the center of mass of a manually
selected central fiducial volume within the array. The coordinates of
adjacent, parallel trajectories extending in approximately the anterior–
posterior and dorsomedial–ventrolateral directions were determined up
to an 8 mm radius to encompass the full recording array span. These
coordinates were then extended along the third (z-axis) dimension using
the appropriate linear transformation matrices, then visualized in SUMA
as final recording trajectories.

The coordinate of intersection between a trajectory axis and dura was
calculated by manually selecting where the reconstructed trajectory in-
tersected the monkey’s 3D MRI brain surface. Using the same trans-
forms, the resulting coordinate was transformed to the trajectory space.
The normal of the resulting coordinate was used as the z-axis value of the
final dura–trajectory intersection coordinate to further align this coordi-
nate along the trajectory axis. For subsequent electrode coordinate cal-
culations, this point served as turn 0. Neuronal recording locations were
described by their position along the array’s anterior–posterior and dor-
somedial–ventrolateral axes, and the number of 0.125 mm turns of the
manual electrode microdrive. All recording locations were determined in
the trajectory space, then transformed back to MRI native coordinates.

To visualize the anatomical location of each recording site, the mon-
key MRI brains underwent linear and nonlinear registration to the D99
macaque atlas using the script macaque_align.csh (Reveley et al., 2016).
All MRI recording coordinates were transformed via this concatenated
registration to the D99 atlas space. We display anatomical locations with
a radius of 1 mm from the registered coordinates to account for error
introduced throughout the imaging processing steps.

Electrophysiology. Individual dlPFC neurons were isolated using �16
acutely inserted microelectrodes through a permanent recording cham-
ber implant. Neurons were selected for recording based solely upon their
stability and signal-to-noise ratio, regardless of any behaviorally related
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responses. Signals were sorted into individual units using principal com-
ponents analysis and individual waveform features (Plexon Offline
Sorter, Plexon). Data analysis was performed in Matlab (Mathworks).
Other results from this dataset have been previously reported (Asaad and
Eskandar, 2011).

General data analysis. Analyses used a sliding 200 ms time window
shifted in 25 ms steps across the trial. This time window was selected to
match the typical dynamics of dlPFC neurons, which often show phasic
responses of about this duration. Trials were divided into cue-triggered
and feedback-triggered segments of activity because varying reaction
times changed the precise interval between these events; we were most
interested in neuronal activity evoked by these stimuli, and so precise
alignment of neuronal activity to them was desirable. This approach is
reflected in the figures containing a split x-axis (time). For the cross-
temporal decoding analysis (see Figs. 6, 8), the two trial segments were
concatenated for analysis and visualization. Because multiple compari-

sons were performed over time bins and/or neurons, all p values were
subjected to the Benjamini–Hochberg procedure to limit the false dis-
covery rate (Benjamini and Hochberg 1995), using a q level of 0.05.

Because cue selectivity is determined by comparing spike rates across
blocks of trials, there is the potential for slow changes in baseline activity,
whether mechanical or physiological, to influence this measure. There-
fore, although information about the cue objects could persist between
trials (because the same cue remained correct across an entire block), we
conservatively repeated some analyses (see Results) while excluding
any neuron that showed significant cue selectivity during a 500 ms
baseline epoch (from �750 to �250 ms before cue array onset).
Specifically, if a neuron exhibited cue selectivity during any 200 ms
bin within that interval, it was eliminated from the reanalysis. Assess-
ing spatial selectivity during the cue-learning task was not as suscep-
tible to this concern because the spatial choice varied trial by trial
rather than block by block.

Figure 1. Behavioral task, behavioral performance, and recording locations. A, Behavioral task. Animals first acquired, then held fixation for 1 s. This was followed by the appearance of a cue array
consisting of four cue objects, randomly arranged, presented for 0.5 s. A 1 s “delay” interval followed. Then, the fixation spot disappeared and animals made their choice by saccading to the former
location of one of the cues. Central fixation was maintained throughout the trial until the saccadic response. If the cue designated “correct” had appeared at the chosen location, generic positive
feedback (a green circle) was presented for 0.5 s, followed by automated juice reward. If the chosen location had contained an “incorrect” cue, a red “X” was presented without subsequent reward.
Once animals learned which cue marked the rewarded location and performed 40 –50 further correct trials, a different cue was designated correct and they were required to relearn the correct cue
using trial and error. The “spatial” task used the same sequence of cues and motor responses; however, a particular spatial location determined the correct response regardless of the cue that earlier
appeared there. In that case, no credit assignment to the cues was necessary for learning. B, Behavioral performance from a typical session for each animal. Blocks, separated by vertical white lines,
consisted of one feature (cue picture or spatial location) designated as correct. The white numbers identify the condition in that block (blocks 1– 4 for each of the four cue pictures; blocks 5– 8 for each
of the spatial locations that could be designated correct). Blocks were interleaved in a pseudorandom fashion such that the cue-learning and spatial-learning tasks occurred in pairs and no individual
block would be repeated within an eight-block cycle. Behavioral data were smoothed in a 10-trial boxcar average (green, correct choice; red, incorrect choice; pink, broken fixation; blue, early
response; gray, no fixation to initiate trial). C, The behavioral strategy used by the animals. Here, rather than overall performance, the probabilities of repeating the immediately preceding choice
of cue object (red) or spatial location (blue)—whatever those choices happened to be—are plotted as a function of trial number within a block (�SEs). Only the cue-learning blocks, in which the
animals needed to learn which cue object marked the correct spatial location, are included. Note that these probabilities begin relatively higher due to the presence of preceding cue-learning or
spatial-learning blocks. Animals relied relatively more on a spatial strategy (reselecting a particular spatial location) early during learning, then switched to a cue-based strategy (reselecting the
location indicated by a particular cue) as learning progressed. D, Locations of neuronal recordings. The density of recording sites from both animals is projected onto a reference macaque brain and
shown in the three standard planes (see Materials and Methods). Warmer colors indicate relatively more recordings performed at those locations. The visualized slices were selected to pass through
the highest-density region.
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Neural information. The amount of information neuronal responses
( R) conveyed about task features ( S) was quantified using an informa-
tion theoretic approach. Specifically, the information (in bits) about a
feature (cue or outcome) evident in a neuron’s activity was calculated as
the probability of observing a particular neuronal response, r (number of
spikes in the examined time bin) given a particular stimulus, s [individual
feature exemplar: cues (A, B, C, or D) or (unexpected correct, expected
correct, unexpected incorrect, or expected incorrect) outcomes], sum-
ming over neuronal responses (ri � R) and feature exemplars (sj � S) as
follows:

�
j

�
i

p�ri�sj� � log2�p�ri�sj�

p�ri�
�

The probability of a response given a particular stimulus was normalized
by the log ratio comparing the probability of observing that specific
neuronal response given a stimulus divided by the probability of observ-
ing that response over all trials. The maximum amount of information
that could be conveyed about a feature given four exemplars was two bits.

The significance of the information conveyed was assessed using a
bootstrap method in which spike rates were randomly shuffled across the
four feature exemplars followed by recalculation of the information met-
ric. This process was repeated 1000 times to obtain a distribution of
information values and the p values of the actual (nonshuffled) data were
obtained by comparison of the observed information value to this distri-
bution using a one-tailed test.

To understand how much information was conveyed by neurons as a
function of learning, we determined how neural information varied dur-
ing learning in those neurons that carried significant information about
the cue objects or spatial locations. Specifically, we recalculated the in-
formation metric in five-trial segments of data sorted with respect to the
achievement of learning criterion (four trials in a row correct, because the
probability of observing that number of consecutive correct choices by
chance was 0.25 4 � 0.01). Because differences in the number of trials
used for any particular analysis will change the available entropy, the
neural information calculated here is not directly comparable to that in
other analyses (as above). More importantly, differences in the number
of trials at different stages of learning within this analysis can produce
false trends that represent simply the varying entropy. Therefore, we
compared the information obtained in this analysis to shuffled controls
in which the assignments of trials to cue objects or spatial locations were
randomized, maintaining consistent entropy with respect to the original,
nonshuffled calculation, at each stage of learning.

Population decoding. To determine the amount of information a pop-
ulation of neurons conveyed about the correct cue, we used a simple
linear decoder (Gochin et al., 1994; Victor and Purpura, 1996; Samengo,
2002) to classify trials according to the spike rates of simultaneously
recorded neurons. Individual recording sessions contained between 2
and 29 dlPFC neurons. The analytic approach began by creating four
mean population activity vectors for the n neurons recorded in a single
session in Rn space, with one vector for each of the four cues, considering
only correctly performed trials when that cue was designated correct.
These four mean vectors were then compared against neural activity
vectors derived from individual trials (not drawn from the training set of
trials). Each trial was classified as belonging to the group represented by
the mean vector having the shortest Euclidean distance to it. Classifica-
tion accuracy was simply the proportion of trials in which neuronal
activity most closely matched the correct cue rather than the other cues,
based upon this n-dimensional distance metric. Monte Carlo cross-
validation was performed over 100 iterations, each using an 80:20 (train-
ing/testing) split of the data, yielding 100 accuracy scores. This procedure
was repeated for each time bin. The stability of neuronal population
representations over time was assessed by training and testing the data
using different time bins (Meyers et al., 2008; Stokes et al., 2013). Here,
above-chance performance resulted when a classifier trained at one time
could successfully be applied to activity observed at a different time
within the trial, reflecting some degree of similarity in the neuronal rep-
resentations. For this analysis, neuronal spike rates were smoothed with a

Gaussian kernel (� � 25 ms) before taking means over 200 ms bins
shifted by 25 ms steps.

To determine whether a particular classification accuracy was better
than chance, we repeated the decoding procedure using a randomized
assignment of cues to trials (thereby shuffling spike rates), also over 100
iterations. These two distributions of accuracy scores, one for the real
(unshuffled) data and one for the randomized data, were then compared
using the receiver operating characteristic (ROC) area-under-the-curve
(AUC), combined with a bootstrap test for significance over 1000 itera-
tions (in which the group membership of a given accuracy score was
randomized to create the null distribution). Because the observed vari-
ance of the accuracy scores depends on details, such as training/testing
ratio and number of Monte-Carlo cross-validations performed, the ROC
AUC reflects the adequacy of those chosen parameters to appropriately
estimate decoder classification accuracy, providing additional informa-
tion regarding its robustness and significance.

To understand how multiple behavioral factors may have together
influenced feedback-epoch neuronal activity, we constructed a linear
model for each neuron incorporating several categorical behavioral vari-
ables. Specifically, predictor variables consisted of the Task (cue learning
vs spatial learning), the outcome [reward prediction error (RPE): Unex-
pected Positive, Expected Positive, Unexpected Negative, Expected Neg-
ative], the identity of the chosen Cue or spatial Location, and whether the
animal repeated that choice of cue or location on the next trial (Will
Repeat Cue and Will Repeat Location). The RPE was determined as in
our prior work (Asaad and Eskandar, 2011) by comparing the outcome
of the current trial with that of the immediately preceding trial. In other
words, if the current trial was correct and the prior trial was incorrect, the
current trial was deemed to be unexpectedly correct and therefore re-
flected a positive RPE. Negative RPEs occurred when the current trial was
incorrect whereas the prior trial was correct. Zero RPEs resulted when the
current and prior trial had the same positive or negative outcome. This
approach was feasible because, as we previously observed, the single pre-
ceding trial had the strongest influence on the animals’ strategy. The
linear models allowed for one-way interactions between these predictors.
The response variable was a neuron’s spike rate during the 500 ms feed-
back period.

To determine the similarity between a feedback-related representation
of the cue and the earlier representation of that cue (when it was visually
present in the cue array) during learning, we compared neuronal popu-
lation activity in a single 200 ms bin starting 100 ms after feedback onset
to that in a corresponding 200 ms bin starting 100 ms after cue array
onset. These time bins were chosen because they captured the most com-
mon peak phasic response of neurons in this region, but the pattern and
significance of results observed were insensitive to the precise time bins
chosen. The similarity of population representations at those times was
compared by computing the cosine between the population vectors as
follows:

Vcue � Vfeedback

�Vcue� �Vfeedback�

For this analysis, trials were sorted according to the trial number relative
to achieving the learning criterion of four consecutive correct trials.
These values were compared with the vector similarity recalculated for
the condition in which spike counts were randomized across trials. This
provides a baseline for this metric using the same distribution of neuro-
nal activity within each session.

Results
We trained two nonhuman primates (M1 and M2) to perform a
learning task that invoked both the structural and temporal
credit-assignment problems. The task required the animals to
learn (and subsequently relearn many times) which cue among
four, presented earlier in a trial, signaled the correct spatial choice
at the end of the trial (Fig. 1). We recorded 635 neurons (395 in
M1; 240 in M2) from the dlPFC while animals performed this
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task to determine whether the activity of
these neurons provided the necessary in-
formation for performing the credit as-
signment.

Behavior
A detailed analysis of the animals’ behav-
ior during this task was reported previ-
ously (Asaad and Eskandar, 2011). Three
key observations are relevant here. First,
animals tended to learn more from correct
responses than from incorrect responses. In
other words, they did not rely heavily on
counterfactual reasoning (accumulated in-
formation about which choices are not cor-
rect from prior negative outcomes); rather,
negative outcomes led to random or nearly
random guessing. Second, their strategies
were driven in large part by the immediately

Figure 2. Cue-related and outcome-related information across neurons. A–F, The population-averaged information about cues (A and B) and outcomes (E and F ) for each subject (M1: A, C, and
E; M2: B, D, and F ). In C and D, and in the top portion of A, B, E, and F, the information (in bits) is shown at each time point, averaged across all recorded neurons from each subject. The shaded region
around each line indicated the mean � SE. Note that information about the correct cue can be present throughout the trial because this is stable over an entire block. The bottom portions of A, B,
E, and F show the number of neurons conveying significant information at each time point. C and D show the time course of information about the cues within just those neurons with significant
cue-related information during the feedback period. Outcome-related information before the feedback reflects the prior trial’s outcome, as previously described (Asaad and Eskandar, 2011). Note
that the amount of information conveyed about cues or outcomes over the entire population is within the same order of magnitude (top portions of A, B, E, and F ), but this information is distributed
over many more neurons in the case of outcome representation (C, D, and bottom portions of A, B, E, and F ).

Figure 3. Timing of peak cue-related information. The time of maximal information about the cues is plotted for every neuron
(blue) or only neurons carrying statistically significant information (red). For each neuron, the time of peak cue-related information
was determined and added to this histogram to depict the number of neurons that conveyed their maximal cue-selective infor-
mation at each time point. The shaded areas under the red line were integrated to obtain the numbers of neurons whose
cue-related information was maximal in the cue or feedback epochs (see text). Note the local peak in the number of neurons whose
maximal information about the cues was conveyed during the feedback period.
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preceding single trial’s outcome. Third, superimposed on this, ani-
mals relied on a default spatial strategy; that is, they typically
reselected a chosen spatial location on a subsequent trial in re-
sponse to a positive outcome. They converted to a cue-based
strategy (reselecting the location marked by a particular cue ob-
ject) once the spatial strategy failed. This dynamic is shown in
Figure 1C, which plots the probability of reselecting a particular
cue or spatial location as a function of trial number within a
block.

Last, because blocks were chosen in a pseudorandom fashion,
we confirmed that animals did not use information from prior
blocks to narrow their choices and accelerate learning in subse-
quent blocks. Specifically, examining the first cycle of four blocks
in which animals learned to designate each of the four cue
objects as correct, there was no significant difference in the
average initial performance in each block (average percentage
correct in the first five trials ranged from 28.0 to 30.9%, p �
0.93 by one-way ANOVA). So, although animals could have
deduced by the fourth block the identity of the correct cue
with 100% accuracy, they did not appear to use such a strategy,
consistent with their more local lack of reliance on negative
feedback to narrow choices within a block.

Neuronal representations at the time of feedback
Credit assignment first requires a representation of the relevant
feature— here, the cue object that correctly signaled the rewarded
saccade target—when the success or failure of a particular choice
became evident. Critically, the generic feedback provided to the
animals in this task to indicate a correct choice was identical

across all conditions and so revealed nothing about the identity of
the relevant cue; rather, information about the cue at the time of
feedback must be internally generated by the animals to solve the
task. Indeed, we observed that information about the correct cue
was available throughout the trial (because the identity of the
correct cue remained stable throughout a block), including dur-
ing feedback (Fig. 2). More specifically, 161 of 635 individual
prefrontal neurons (25.4% overall; 96 of 395 and 65 of 240 in each
animal) conveyed significant information about the identity of
the correct cue at some point during feedback about the outcome.

Because the calculation of information about the correct cue
depended upon comparing spike rates across blocks of trials, slow
changes in baseline neuronal activity (e.g., due to mechanical or
physiological “drift”) could potentially artifactually influence the
number of neurons observed to carry information about this
feature. Therefore, we repeated the information calculation after
eliminating neurons observed to show significant information
during a 500 ms “baseline” epoch preceding cue array onset (see
Materials and Methods). This eliminated 35.1% of neurons (138
of 395 in M1; 85 of 240 in M2). Of the remaining neurons, 18.0%
(74 of 412; 42 of 257 in M1; 32 of 155 in M2) continued to convey
significant information about the cues during feedback (71% of
the proportion observed across all neurons). Note that this is a
conservative estimate, because the design of the task allowed that
information about the cues could persist between trials, and so
some of the excluded neurons could in principle have been con-
veying useful information even during the baseline epoch.

The importance of the cue representation during the feedback
epoch was evident in examining the time course of information

Figure 4. Examples of individual neurons with both cue and outcome selectivity. A–C, Three individual neurons. The top portion shows each neuron’s activity sorted according to the cue picture
that was designated correct, while the bottom portion shows those neurons’ activities sorted according to the outcome. The top portion of each row shows the activity of these neurons in spikes per
second, whereas the bottom portions show the information content in bits (assessed across the 4 cue or outcome exemplars; see Materials and Methods). The shading in the bottom portions reflects
the significance of the information metric based upon a bootstrap reshuffling of the assignment of trials to conditions. Note that information about the correct cue picture could be present before
the appearance of the cue array because a single cue was designated correct for an entire block. Note also that significant information about outcome can be present before the feedback epoch
because the prior trial’s outcome was reflected in the outcome categories used here (Asaad and Eskandar, 2011; Donahue and Lee, 2015).
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about the cues across a trial. When considering just those neu-
rons with significant cue selectivity during the feedback period, a
prominent second peak of information was evident during that
epoch (Fig. 2C,D). Similarly, the feedback period exhibited a local
maximum in the number of neurons that conveyed their maxi-
mal information about the cues during that time (Fig. 3). Specif-
ically, the incidence of neurons that were maximally selective for
the cues during feedback (52 of 635; 8.2% overall) was approxi-
mately half the incidence of neurons conveying maximal cue-
related information during the cue interval itself (101 of 635;
15.9% overall). In other words, for a notable subgroup of neu-
rons, the feedback period was the most potent task epoch to elicit
cue-related information. This second peak in cue encoding at the
time of feedback was consistent with amplification or reactiva-
tion of the required information when the contingent outcome
became apparent.

While the presence of information about the correct cue at the
time of feedback suggests neurons in the dlPFC could contribute
information necessary for credit assignment, implicating them
more directly in the credit assignment process requires a concur-

rent representation of the outcome. We previously observed that
dlPFC neurons were highly engaged by trial outcomes in this task,
such as whether a trial was correct or incorrect, and whether that
outcome was surprising. In particular, most PFC neurons responded
to unexpected outcomes, with approximately equal numbers acti-
vated by positive or negative reward-prediction errors (Asaad and
Eskandar, 2011). Extending this, here we find that some neurons
(123 of 635; 19.4% overall; 71 of 395 and 52 of 240 in each animal)
conveyed information about both the outcome and the correct
cue during feedback (Fig. 4). In fact, the magnitude of informa-
tion for cues and outcomes was correlated such that neurons that
conveyed more information about the outcome tended also to
convey greater information about the cue object (M1: r � 0.55,
p � 0.001; M2: r � 0.38, p � 0.001). This combined representa-
tion of outcome and relevant antecedent information is a neces-
sary substrate for linking cause and effect for credit assignment,
so neurons that integrate both types of information can partici-
pate directly in that function.

To understand how information about the animal’s behav-
ioral choice evolved with learning, we calculated the information

Figure 5. Cue and spatial information as a function of learning. A–D, The information conveyed by neurons during the cue epoch (blue) or feedback epoch (red) about the selected cue (A, B) or
spatial location (C, D) is plotted as a function of correct trial number relative to learning criterion (�SEs). The same metric calculated for data in which the assignments of trials to cue objects (A, B)
or spatial locations (C, D) were shuffled are shown in yellow and purple, respectively. Data are shown separately for subjects M1 (A, C) and M2 (B, D). Note that the information measured here is an
order of magnitude higher than observed in Figure 2, in large part due to differences in entropy in this calculation which considered fewer trials for each data point. Note the somewhat delayed peak
in cue information relative to spatial information, which may reflect animals’ initial reliance on a spatial strategy before switching to a cue-based strategy.
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metric during the feedback period for
short segments of trials organized accord-
ing to stage of learning (see Materials and
Methods). We found that information
about the cue formerly at the chosen loca-
tion and about the spatial location itself
peaked very early during learning, and then
rapidly declined once the correct cue ob-
ject was learned (Fig. 5). In general, neu-
rons conveyed more information about
the spatial location of the choice during
early learning, but the magnitude of infor-
mation about the cue or spatial location
stabilized at about the same low level once
learning had occurred. Interestingly, the
time course of information during early
learning suggests that cue object informa-
tion may peak somewhat later than spatial
information, consistent with the animals’
behavioral strategy, in which they tended
to rely first on repeating a spatial choice
but then switched to repeating a cue-
based choice once that approach failed.

The stability of neuronal
representations over time
If a representation is to be directly useful for credit assignment, it
must be similar to the representation of the relevant feature itself,
and not simply an independent, even if informative, representa-

tion. In other words, neuronal activity might discriminate be-
tween the visual cues at the time of feedback, but do so in a
manner independent of the representation that was evident at the
time of cue presentation. Prior studies have indeed suggested that

Figure 6. Cross-temporal decoding of cue-related neuronal activity. A, B, Population activity vectors from simultaneously recorded neurons were used to classify individual trials according to the
correct cue (A, M1; B, M2). The accuracy of classification is depicted in the color scale of the central plot. The classifier was trained using a particular time bin (x-axis) and then tested against the same
or different time bins ( y-axis) from separate trials. Classification used a linear decoder that relied upon simply the minimum Euclidean distance between trained and tested vectors. The decoding
accuracy when the same time bin was used for training and testing (across separate trials) resides in the main diagonal and is shown in the upper left (black line with gray areas representing SEs and
SDs). A shuffled bootstrap procedure in which trials were randomly reassigned to cues was used to verify chance-level decoding (�25% correct) in that circumstance (black line with red areas for
SEs and SDs). The ROC results comparing actual versus shuffled decoding is shown at the bottom left, and the fraction of recording sessions with significant decoding according to the ROC shuffled
bootstrap is shown at the bottom right. The far upper-left shows the ROC results along the main diagonal, with the shading corresponding to the fraction of significant sessions as in the bottom right.
Cross-temporal decoding accuracy is depicted at the upper right, which is computed by taking the mean over each diagonal. The SDs and SEs are shown in light and dark gray, respectively (SEs may
be imperceptible due to their small values). Note that while there is a peak in decoding accuracy when using nearby time bins (near the center of this plot), decoding accuracy does not return to
chance even at large offsets between the training and decoding bins, necessitating some degree of stability in the neuronal representation across time. Exclusion of neurons with potentially unstable
baseline activity (see Materials and Methods) did not significantly alter this result.

Figure 7. Decoding accuracy as a function of neuronal ensemble size. Decoding accuracies are plotted against the size of the corre-
sponding neuronal ensembles for each session. The dots and lines represent the means across all training– decoding offsets�SDs (SEs are
too small to be visible). The lines depict the least-squares linear fit to each subject’s data (M1: r � 0.518, p � 0.002; M2: r � 0.673, p �
0.0008). Note the y intercept for both animals is appropriately close to chance level (horizontal line, 0.25).
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the representation of stimuli over time is not stable in the PFC,
such that the neuronal representation at one time is not related to
the neuronal representation of the same stimulus at a different
time (Meyers et al., 2008; Sigala et al., 2008; Barak et al., 2010;
Stokes et al., 2013). However, in our task, a stable representation
of the cue over time was necessary so that reinforcement mecha-
nisms acting at the time of feedback could ultimately drive atten-
tion to that cue when it next appeared in the subsequent trial to
properly guide an animal’s choice.

The activity of single neurons is typically noisy, and so exam-
ining their individual responses to the cue during cue array
presentation versus during feedback may yield little apparent
similarity (Fig. 4). However, applying a simple, linear population
decoding method to simultaneously recorded neurons revealed
that there was in fact significant consistency across these repre-
sentations (Fig. 6). Specifically, a decoder trained at the time of
feedback could be applied to classify, above chance performance,
the identity of a cue using neural activity at the time of cue array
presentation and, conversely, a decoder trained during cue pre-
sentation could decode the identity of a cue according to its neu-
ral representation at the time of feedback.

Decoder performance depended on the number of neurons
within each ensemble (Fig. 7). While classification accuracy was
only modestly above chance, on average and in absolute terms,
larger ensembles yielded more successful decoding. This suggests
the observed results did not reflect ceiling performance, and im-
proved accuracy would likely be achieved with larger populations
of neurons. Note that the information being decoded here is
dependent upon inferred covert attention to a particular object
presented simultaneously with other objects in a cue array, rather
than simply upon the identity of a single object that is the subject
of direct fixation, and the data comprising this figure include the
cross-temporal (off-diagonal) decoding bins. For comparison, if
one considers only the bins on-diagonal, maximal decoding
accuracy for a single session reaches �38%; further limiting
the decoding to only the time bins during cue array presenta-
tion yields a maximum decoding accuracy of �46%. These

results approximately illustrate the maximum decoding accu-
racy achievable with this simple linear decoder applied to our
dataset.

The context specificity of neuronal representations for
credit assignment
Next, credit assignment requires a representation activated only
when necessary to avoid misattribution of credit for successful or
unsuccessful outcomes to available but irrelevant features. There-
fore, we examined whether the feedback-related representation
of the cue was actively engaged only when necessary, or if it re-
flected simply an automatic process triggered by the visual stim-
ulus at the intended choice location. To do this, we compared
neuronal activity between the credit assignment task and a “spa-
tial” task in which the cues themselves were irrelevant for learning
the correct response. Both tasks used the same visual stimuli and
required the same motor responses. However, in the spatial task,
the correct choice was determined solely by its spatial location
rather than by the cue that had appeared earlier at that location.
We found that neurons no longer conveyed the identity of the cue
object when it was not necessary for credit assignment: Only 10 of
395 (2.5%) and 6 of 240 (2.5%) neurons in each animal reflected
the correct cue at the time of feedback in the spatial task.

Likewise, application of the same population analysis, used
above, to decode the identity of the cue at the chosen location in
the spatial task yielded very different results compared with its
application in the main credit-assignment task. Decoding accu-
racy was barely distinguishable from chance performance, and
the ROC analysis revealed few significant time bins and few ses-
sions with significant decoding performance (Fig. 8). These find-
ings demonstrate that feedback-epoch representations of the
correct cue were actively engaged only as needed, and are broadly
consistent with prior results demonstrating active selection of
relevant information for representation in the dlPFC (Rainer et
al., 1998a; Everling et al., 2002; Lebedev et al., 2004).

Figure 8. Cross-temporal decoding of cue-related activity in the spatial task. Conventions and methods are the same as in Figure 5. Here, the population decoding was applied to assess the
amount of information conveyed by simultaneously recorded neurons about the cue during the spatial task, where the identity of the cue was irrelevant to learning. A, Data for M1. B, Data for M2.
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The relationships between feedback-related neuronal activity
and learning
To explore the relationship between feedback period activity and
behavioral variables, including subsequent choices, we fit a linear
model to the spike rates of each neuron during the 500 ms feed-
back epoch. We assessed the following predictors: Task (Object vs
Spatial); RPE (outcome and expectedness); Cue object formerly
at the chosen location (A, B, C, or D); Chosen spatial location
(upper left, upper right, lower right, or lower left); and
whether the animal will repeat the choice of that object or that
spatial location on the subsequent trial. We allowed for one-

way interactions between these potential predictors, and
counted the number of neurons whose feedback-epoch activ-
ity significantly depended on these factors. We found that
reward-prediction error, the object formerly at the chosen
location and the chosen location itself were the factors that
most often significantly influenced a neuron’s feedback epoch
response (Fig. 9). More than a third of neurons that conveyed
information about the reward-prediction error did so in con-
junction with a representation of the object (M1: 54 of 130,
41.5%; M2: 33 of 83, 39.8%). Interestingly, �10 –13% of neu-
rons had feedback-related activity that predicted an animal

Figure 9. Relationships between behavioral variables and feedback epoch activity. A linear model was fit to the feedback epoch spike rates of individual neurons to assess the influence of the
animals’ current and upcoming choices on neuronal activity (spike rate in the 500 ms feedback epoch). A, Results for M1. B, Results for M2. Predictor variables consisted of the Task (cue learning vs
spatial learning), the outcome (RPE; see Materials and Methods), the identity of the chosen Cue or spatial Location, and whether the animal would repeat that choice of cue or location on the next
trial (Will Repeat Cue and Will Repeat Location). The “Total” column on the right shows the number of neurons whose activity was found to be significantly ( p � 0.01) dependent upon the factor
listed at the left, either singularly or in interaction with another factor; numbers here may not sum to the simple totals taken from the left because neurons were counted only once even if they
depended on a particular factor in more than one way (such as in 2 different interactions). Repeating this analysis while excluding neurons with potentially unstable baseline activity (see Materials
and Methods) did not significantly alter any of these results (all values within �4%).
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would subsequently reselect that cue object or spatial location
on the next trial.

Finally, we examined whether the fidelity of the feedback rep-
resentation was related to learning behavior. Specifically, we hy-
pothesized that neural representations of a particular credit-
deserving feature at different times within a trial—specifically,
when that feature was actually present versus when the outcome
was revealed—should be most similar during early learning,
when credit assignment was needed to forge the link between
these events. Therefore, we quantified the degree to which pop-
ulation activity at the time of feedback matched activity earlier in
the trial, at the time of cue presentation. Applying a simple cosine
vector similarity measure (see Materials and Methods) revealed
that similarity was indeed greatest in earlier trials and decre-
mented gradually as learning progressed (Fig. 10; for a simple
linear fit for subject M1: r � �0.65, p � 0.0001; M2: r � �0.44,
p � 0.0012; for both subjects combined: r � �0.6972, p �
0.0001), consistent with the particular importance of credit
assignment during early learning. No relationship between sim-
ilarity and learning was observed in the control analysis that re-
calculated the similarity measure using shuffled spike rates (M1:
r � 0.05, p � 0.19; M2: r � 0.19, p � 0.72).

Discussion
We found that neuronal activity in the dlPFC fulfilled the neces-
sary criteria for enabling a solution to the credit-assignment
problem.

First, many neurons encoded the identity of a relevant cue at
the time of feedback, even though it was no longer present. In-
formation about the cues (and chosen locations) peaked during
early learning, and rapidly settled to a lower level once learning
was complete. Importantly, many of these neurons simultane-
ously encoded the outcome of a choice. This concurrent repre-
sentation is necessary to link the outcome with the causal cue.
The representation of information in other PFC areas may not
share this selectivity. For example, neurons in the orbitofrontal
cortex have been reported to reflect prior actions at the time of
feedback, but do so regardless of the outcome (Tsujimoto et al.,
2009), which is inconsistent with a central role in credit assign-
ment; however, that study and another (Seo et al., 2007) did

observe encoding of prior actions with respect to prior or current
reward in the dlPFC, analogous to our results showing comodu-
lation of neuronal responses by preceding sensory stimuli and
outcomes. Notably, the types of outcome modulation we ob-
served here were consistent with a reward-prediction error, dem-
onstrating that this critical learning signal can interact directly
with the neuronal representations of to-be-learned features in the
dlPFC.

The observation that neuronal activity represented the cues at the
time of feedback is distinct from the “chosen-value” representations
previously observed throughout the PFC (Padoa-Schioppa, 2009,
2013; Sul et al., 2010; Kennerley et al., 2011; Donahue and Lee,
2015). Specifically, all the cues in our experiment were associated
with identical reward, so neural activity could differentiate the
cues solely by their visual features. The ability to link outcomes
with potentially causative stimuli based upon their identity (more
than simply reflecting their differential value) is a key requirement
for credit assignment.

The application of a multivariate linear model to the feedback
period activity of dlPFC neurons revealed that not only could
feedback-related activity reflect the choice outcome and task fea-
tures, such as the relevant cue object or chosen spatial location,
but that in some neurons this activity predicted whether animals
would reselect those features on the subsequent trial, consistent
with the notion that this activity contributes to learning behavior.

Second, the neuronal representation of the cues at the time of
feedback were sufficiently similar to the representation of the
same cues at the time of their actual presentation, earlier in the
trial, such that the identity of the correct cue could be determined
from ensemble activity using a decoder trained at a different time
within the trial. A stable representation over time can facilitate
the linking of a behavioral outcome with an earlier causal feature.
While statistically significant and stable population decoding was
found throughout the trial and across broad temporal offsets, the
magnitude of this decoding was modest, on the order of 3–5%
improvements (in absolute terms) over chance performance, on
average. Some of this was likely due to the relatively small ensem-
bles of simultaneously recorded neurons considered, and some of
this likely results from the use of a very simple linear decoder.

Figure 10. Cross-temporal fidelity of cue representations across the cue and feedback epochs during learning. A, B, The similarity of neuronal representations of the cue across time for subjects
M1 (A) and M2 (B) was assessed by taking the cosine between population vectors derived from the cue and feedback epochs of correct trials and plotting this according to trial number relative to
learning criterion (first of 4 consecutive correct trials). Shown is the mean vector similarity for each trial (blue) � SE (left axis). A third-order polynomial fit is overlaid to depict the trend. The shuffled
(control) vector similarity values are plotted in red. Concurrent behavioral performance is plotted as a bar graph in the background (right axis). Data are smoothed using a three-trial sliding average.
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Therefore, decoding performance with larger ensembles and us-
ing more sophisticated, biologically plausible classifiers is likely
to be significantly better (Pouget et al., 2000), though this re-
mains to be tested directly in the context of credit assignment.

Third, when the same neurons were recorded in a task with
identical visual and motor elements, but with a different rule that
rendered the identity of the cue object irrelevant for learning, the
cues were no longer strongly represented in neuronal activity at
the time of feedback, neither within individual neurons nor
across simultaneously recorded populations of neurons, demon-
strating that the cue representation was actively engaged when
necessary for learning.

Last, the fidelity of the feedback representation, compared
with the earlier representation of the cues, was greatest when
credit assignment was most critical, in the earlier trials of each
block when learning occurred. These data suggest that stability of
the neural code may be dynamically modulated by the needs of
the task and state of learning.

Together, these results are consistent with the notion that
neurons in the dlPFC provide the necessary selective and stable
representation of relevant features at the time of feedback to en-
able credit assignment.

Previous work found that little or no similarity exists in the
dlPFC neural representation of particular features across time
(Meyers et al., 2008; Sigala et al., 2008; Barak et al., 2010; Stokes et
al., 2013), in contrast to our current results. One possible reason
for this difference may lie in the nature of the behavioral task. Our
task required “on-line” learning and relearning, and explicitly
required difficult credit assignment to achieve this learning;
meanwhile, prior work used a well learned task in which animals
had extensive experience with the particular cues, rules, and dis-
criminations. As we previously observed, the magnitude of dlPFC
neuronal activity related to learning decreases over extended ex-
perience (Asaad et al., 1998), and here we observed that the cross-
temporal representational similarity also decreases quite rapidly
over at least a few tens of trials; more dissimilarity may develop
gradually over time, perhaps even to the point where no apparent
similarity remains. Therefore, the examination of representa-
tional similarity during early, on-line learning and the use of a
task that required representational stability for credit assignment
may have been critical to observe stability in the neural code.
Importantly, our results do not argue for a lack of representa-
tional “drift” as information is passed among neuronal ensem-
bles, but simply demonstrate that significant information can
indeed persist in a stable form.

The persistence of some aspect of neuronal activity related to
the credit-deserving feature into the time of delayed feedback is
known more generally as an eligibility trace (Sutton and Barto,
1998), and reinforcement interacting with this eligibility trace is
what confers the selectivity necessary for proper credit assign-
ment. While spiking activity, as we observed here, may provide an
overt eligibility trace, additional nonspiking aspects of neuronal
function may nevertheless contribute to this process (Fiete and
Seung, 2006; Izhikevich, 2007; Urbanczik and Senn, 2009). Our
results show, however, that stable spiking activity is indeed one
viable mechanism for solving the temporal credit-assignment
problem.

Credit assignment is undoubtedly a complex process to which
a variety of brain regions contribute key components. For exam-
ple, previous work has implicated other areas of the PFC as well as
the parietal cortex. Specifically, the fMRI BOLD signal in the
lateral orbitofrontal cortex of monkeys was observed to correlate
with win–stay/lose–shift (contrasted with win–shift/lose–stay)

behavior, reflecting successful choices that depended upon proper
credit assignment (Chau et al., 2015), and lesions of the lateral
orbitofrontal cortex led to a “spread of effect” (Ogden, 1933),
whereby credit was misattributed to preceding events (Noonan et
al., 2010). In humans, BOLD signals correlated with attribution
of credit to attended versus nonattended cues were observed in
the medial and orbitofrontal cortices (Akaishi et al., 2016); our
study did not directly assess potential differences in the assign-
ment of credit to attended versus nonattended options because
there was no direct measure of the locus of attention, and these
animals generally learned much more from positive than from
negative feedback in this task (Asaad and Eskandar, 2011), limit-
ing our ability to examine substrates of counterfactual reasoning.
Meanwhile, neurons in the lateral intraparietal sulcus responded
more vigorously after a choice that should have been assigned
credit for a delayed reward, regardless of the timing of that event
within a sequence of choices (Gersch et al., 2014), suggesting
these events may be “tagged” for later reference (perhaps through
the augmentation of an eligibility trace that determines the magni-
tude of an event’s contribution in subsequent credit assignment).

Importantly, credit assignment may not be a unitary process.
There may be both implicit and explicit learning mechanisms
that operate in parallel to enable solutions to the credit-assign-
ment problem (Fu and Anderson, 2008), and so these dlPFC
neuronal representations may ultimately contribute to one or
multiple processes.

Our results show that information necessary to perform credit
assignment resides in the dlPFC. To what extent other cortical or
subcortical areas contribute inputs to this process, are recipients
of information computed here, or interact more dynamically to
enable credit assignment across a broader circuit is not yet clear,
and should be the subject of future work.
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