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Abstract: Deep brain stimulation (DBS) is an effective surgical treatment for movement disorders.
Although stimulation sites for movement disorders such as Parkinson’s disease are established, the
therapeutic mechanisms of DBS remain controversial. Recent research suggests that specific white-
matter tract and circuit activation mediates symptom relief. To investigate these questions, we have
developed a patient-specific open-source software pipeline called ‘DBSproc’ for (1) localizing DBS elec-
trodes and contacts from postoperative CT images, (2) processing structural and diffusion MRI data,
(3) registering all images to a common space, (4) estimating DBS activation volume from patient-
specific voltage and impedance, and (5) understanding the DBS contact-brain connectivity through
probabilistic tractography. In this paper, we explain our methodology and provide validation with
anatomical and tractographic data. This method can be used to help investigate mechanisms of action
of DBS, inform surgical and clinical assessments, and define new therapeutic targets. Hum Brain Mapp
37:422–433, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
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INTRODUCTION

Deep brain stimulation (DBS) is an established, effective
surgical treatment for movement disorders, and it is increas-
ingly employed for other indications. DBS allows for adjust-
able and reversible modulation of neural networks.
Although stimulation sites for disorders such as Parkinson’s
disease (PD), dystonia, and essential tremor are well estab-
lished, their therapeutic mechanisms are still a matter of
debate and controversy [Hubble et al., 1996; Limousin et al.,
1998; Vidailhet et al., 2005].

Recent research has posited that DBS relieves symptoms
by the selective stimulation of white-matter tracts [Hender-
son, 2012] or by the normalization of pathologic global
functional networks [Kringelbach et al., 2011]. Noninvasive
in vivo MRI characterization of structural connectivity is
currently accomplished with diffusion weighted imaging
(DWI) techniques, such as diffusion tensor imaging (DTI).
As myelinated axons differentially constrain diffusion of
water molecules along their axes, DTI provides a good
estimate of white-matter location and principal orientation
[Basser and Pierpaoli, 1996]. Although not necessarily an
accurate anatomical measure [Thomas et al., 2014], DTI-
based tractography nevertheless has been shown to iden-
tify certain continuous paths, and changes to those paths,
throughout diffusion MR datasets [Jones et al., 2013].

Case studies characterizing optimal DBS targets using
DTI have isolated specific relevant white-matter targets
[Anthofer et al., 2015; Kovanlikaya et al., 2014; Riva-Posse
et al., 2014; Schlaier et al., 2015; Sweet et al., 2014]. However,
these studies have been limited to small sample sizes, and
tractography measures have been based on deterministic
rather than probabilistic tractography, whereas the latter
has been demonstrated to provide more robust estimates of
underlying white-matter structures [Descoteaux et al., 2009].
In addition, these studies have typically used proprietary
software that obstructs replication and comparisons across
centers and studies.

A major limitation in the field is the proper coregistration
of contacts into the presurgical image space, where diffusion
data is collected. There is currently no gold standard for this
coregistration, and the set of contact coordinates defined for
surgery are referenced to landmarks manually defined
within proprietary software (see Supporting Information).
Thus, it is sometimes not practical to translate contact coor-
dinates into the space where the DTI data is analyzed.

To address these issues, we present a scalable, modular,
and open-source software pipeline called ‘DBSproc’ for merg-
ing preoperative T1-, T2-, and diffusion-weighted (T1w, T2w,
and DW) MR images with postoperative T1w MR and CT
images for accurate DBS electrode localization and tracto-
graphic analysis. Our pipeline includes specifically tailored
scripting and runs alongside several specialized, publically
available software packages, such as: FreeSurfer, for white-
and grey-matter segmentation [Fischl, 2012; http://surfer.
nmr.mgh.harvard.edu]; Medical Image Processing, Analyz-
ing and Visualization (MIPAV), for AC–PC alignment [Bazin

et al., 2007; McAuliffe et al., 2001; http://mipav.cit.nih.gov];
TORTOISE, for diffusion image preprocessing [Pierpaoli
et al., 2010; http://science.nichd.nih.gov/confluence/dis-
play/nihpd/TORTOISE]; AFNI, for MR/CT image registra-
tion; SUMA, for 3D surface manipulation; and FATCAT, for
DTI and probabilistic tractography estimation [Cox, 1996;
Saad and Reynolds, 2012; Taylor and Saad, 2013; http://afni.
nimh.nih.gov]. The presented pipeline, included now in the
AFNI distribution, can be executed via two scripts, and it
allows for patient-specific localization and tractographic anal-
ysis, regardless of DBS implantation site. Our processing
brings all the data to the same space, where diffusion tractog-
raphy is estimated from the automatically detected DBS con-
tacts. In this paper, we explain the methodology, provide
instructions for accessing scripts and sample data, and pro-
vide initial validation with data within a PD DBS population.

MATERIALS AND METHODS

Patient Population

We analyzed imaging data from twenty-six patients (12
females, age: 56.9 6 9.75 years) with idiopathic PD who
received bilateral subthalamic nucleus (STN) (22 patients;
11 females, age: 57.4 6 9.17 years) or globus pallidus pars
interna (GPi) (4 patients; 1 female, age: 54.3 6 13.9 years)
DBS surgery at the National Institutes of Health (NIH)
from 2011 to 2014. This study was conducted in accord-
ance with NIH Institutional Review Board-approved pro-
tocols, and informed consent was obtained from all
patients. Patients were diagnosed with PD in accordance
with the UK Parkinson’s Disease Society Brain Bank Clini-
cal Diagnostic Criteria [Hughes et al., 1992]. All proce-
dures followed approved standard of care.

Surgical Procedure and Follow-up

All patients received pre- and postoperative MRI and CT
scans, described in detail in the next section. The surgical
target was localized anatomically on preoperative imaging
(coregistered T1w, T2w, and CT images using StealthStation
i7, Medtronic, Minneapolis, MN) combined with intraopera-
tive microelectrode recordings. All patients were implanted
with DBS Lead Model 3389 (each lead/electrode has four
1.5 mm contacts, with gaps of 0.5 mm, Medtronic).

One month after DBS implantation the patients under-
went screening of each contact, where an experienced move-
ment disorder neurologist determined the presence of
clinical benefits on the dominant, relevant cardinal symp-
toms for each patient, as well as the presence of immediate
side effects [Volkmann et al., 2006]. The therapeutic benefit
of neurostimulation is defined to be the observed improve-
ment in any of the cardinal symptoms of PD (tremor, brady-
kinesia, and rigidity) in the absence of side effects. Side
effects might include motor contractions, sensory,
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emotional, and vision changes, depending on the contact
location and stimulating parameters.

During the screening session, the voltage thresholds for
clinical benefits (entry voltage) and for side effects (exit volt-
age) were determined for each contact. The difference
between exit and entry voltages determined the therapeutic
window of each contact. For each patient and each hemi-
sphere, we defined the selected contact (SC) to be the one
with the greatest therapeutic window.

Contacts that caused only side effects (i.e., that have a ther-
apeutic window of 0V) at voltages below the averaged SC
hemispheric entry voltage were labeled as noneffective (NE)
contacts. Impedances provided by the DBS programming
unit were recorded for the SC at the chronic stimulation volt-
age, and these are shown in Supporting Information Table I.

Image Acquisition

Preoperative MRI included T1w, T2w, and DW images
collected at 3.0 T. Postoperative MRI consisted of T1w
images collected at 1.5 T. Both pre- and postoperative CT
images were acquired on the same multidetector scanner.

Preoperative MRI was acquired on a 3.0 T scanner (Philips
Achieva XT, Philips Medical Systems, Best, The Netherlands)
with an 8-channel sensitivity encoded head coil (SENSE,
Philips). MRI data comprises a three-dimensional T1w turbo-
field-echo, a T2w turbo-spin-echo, and a DW high-angle
echo-planar imaging (EPI) sequence.

The T1w turbo-field-echo sequence was acquired with the
following parameters: TR: 8.15 ms, TE: 3.735 ms, slice thick-
ness: 1.00 mm, spacing between slices: 1.00 mm, echo train
length: 240, FOV: 240 3 240 mm2 (inplane resolution
0.9375 3 0.9375 mm2), flip angle: 88, acquisition matrix:
240 3 240 interpolated to 256 3 256 with 191 sagittal locations,
and total acquisition time: 6 min and 53 s. The T2w turbo-spin-
echo sequence was acquired with the following parameters:
TR: 2500 ms, TE: 235.648 ms, slice thickness: 1.10 mm, spacing
between slices: 0.55 mm, echo train length: 133, FOV:
250 3 250 mm2 (inplane resolution 0.9765 3 0.9765 mm2), flip
angle: 908, acquisition matrix: 228 3 226, interpolated to
256 3 256 with 327 sagittal locations, and total acquisition
time: 4 min and 37.5 s. Finally, the DW high-angle EPI
sequence was acquired with the following parameters: TR:
9776.51 ms, TE: 65 ms, slice thickness: 2.00 mm, spacing
between slices: 2.00 mm, echo train length: 59, FOV:
224 3 224 mm2 (inplane resolution 2.0 3 2.0 mm2), flip angle:
908, acquisition matrix: 112 3 112 with 78 axial locations, 1 ref-
erence b0 volume, 33 noncollinear gradient directions with
b 5 1000 s/mm2, and total acquisition time: 6 min and 48 s.

Postoperative clinical MRI was acquired on a 1.5 T scanner
(Philips Achieva XT) with an H-Head Coil (Philips). A three-
dimensional T1w fast-field-echo sequence was acquired with
the following parameters: TR: 9.95 ms, TE: 4.524 ms, slice
thickness: 1.00 mm, spacing between slices: 1.00 mm, echo
train length: 1, FOV: 240 3 240 mm2 (inplane resolution
0.9375 3 0.9375 mm), flip angle: 158, acquisition matrix:

240 3 240 interpolated to 256 3 256 with 171 sagittal locations,
and total acquisition time: 6 min and 48 s. The SAR for all
postoperative scans was kept below 0.1 W/kg body weight,
in accordance with Medtronic MRI safety parameters.

Pre- and postoperative CT scans were acquired on a
multidetector scanner (Siemens SOMATOM Definition
Flash, Siemens Healthcare, Erlangen, Germany). CT scans
were acquired with the following parameters: tube volt-
age: 120 kV, tube current: 239 mA, data collection diame-
ter: 500 mm, reconstruction diameter: 250 mm, acquisition
matrix: 512 3 512 with 210 axial locations, slice thickness:
1.00 mm, pixel spacing: 0.4883 3 0.4883 mm.

Image Processing

All MR and CT DICOM images were reconstructed to nifti
volumes using the ‘dcm2nii’ command from the MRIcron
software package [Rorden and Brett, 2000; http://www.
mccauslandcenter.sc.edu/mricro/mricron]. T2w data is
aligned in MIPAV and DW images are preprocessed in
TORTOISE (see “Preprocessing”). Image registration and
tractography are performed within DBSproc, executable
with two scripts: @DBSproc1 (see “Images preparation:
@DBSproc1”) and @DBSproc2 (see “Contact reconstruction
and probabilistic tractography: @DBSproc2”). These two
novel scripts are now part of the AFNI distribution and can
be manually installed, together with a sample dataset, by
running the command @Install_DBSproc. Here we provide
an outline of image-specific processing and registration; see
Figure 1 for a schematic of the pipeline, detailing steps per-
formed in each script. Additional information for each step
is included as Supporting Information: DBSproc Documen-
tation. Finally, we provide several validation strategies (see
“Validation”).

Preprocessing

Preoperative T2w

Anterior and posterior commissure (AC and PC) land-
marks were manually defined on the preoperative T2w vol-
ume using MIPAV software package. A rigid body transform
was then applied resulting in a horizontal AC–PC line and a
vertical midsagittal plane. The transformed volume was visu-
ally inspected.

Diffusion weighted images

DWIs were used to estimate diffusion tensors and maps
of their associated DTI parameters, such as the principal
directions of diffusion, eigenvalues, fractional anisotropy
(FA), and mean diffusivity, which were used to quantita-
tively compare brain tissue properties. FA and principal dif-
fusion directions were used for estimating white-matter
fiber trajectories, and their confidence intervals were calcu-
lated for the implementation of probabilistic tractography
(see “FATCAT and tractography estimation”).
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In TORTOISE, diffusion imaging volumes were motion-,
eddy-, and EPI distortion-corrected, coregistered to the
AC–PC aligned T2w volume, and resampled to 1.5 mm
isotropic voxels using standard settings in the ‘DIFF_
PREP’ tool. FA and directionally encoded color (DEC) data
were subsequently computed using ‘DIFF_CALC’, and
resultant datasets were visually quality checked and
exported to nifti format using the ‘export images’, then
‘AFNI’ option. The TORTOISE-processed T2w volume was
also exported, and this served as the registration target for
diffusion data and all other volumes (henceforth referred
to as the target T2w volume).

Images Preparation: @DBSproc1

This script reads the output from TORTOISE, the preop-
erative T1w, and the postoperative T1w and CT images,

and prepares the data for tractography. It includes tissue
segmentation, image registration and DTI calculations.

Tissue segmentation and ROI setup

Reconstructed T1w image was intensity-normalized using
AFNI’s ‘3dUnifize’ and skull-stripped using the FreeSurfer
command ‘recon-all’ up to the ‘–normalization2’ option. The
skull-stripped T1w volume was affinely registered to the
target T2w volume using AFNI’s ‘align_epi_anat.py’ with
the local Pearson’s coefficient (LPC) cost function [Saad
et al., 2009]. The registered T1w volume was fed back into
FreeSurfer for generating cortical surface models and parcel-
lations, such as ‘aparc 1 aseg’ via the ‘recon-all’ command
with no additional skull stripping (‘2noskullstrip’ option).
FreeSurfer-generated volumes and surfaces were imported
into SUMA using the ‘@SUMA_Make_Spec_FS’ script. The

Figure 1.

Flowchart illustrating the processing pipeline. Preprocessing,

@DBSproc1 and @DBSproc2 (including @eproc, indicated by the

dashed box) are indicated in colored boxes with their individual

steps inside. Bold boxes represent input data. Red text represents

images in original space, and blue text represents nonimaging input

data. Rectangles with black text represent intermediate data in tar-

get T2w space, circles indicate software used, and octagons repre-

sent quality-check points, and rounded rectangles indicate output

data. Specific functions/steps are annotated next to shapes.

T1w/T2w 5 T1/T2-weighted images, DWI 5 diffusion weighted

images, DTI 5 diffusion tensor imaging, AC–PC 5 anterior/

posterior commissure-marked, GM 5 grey matter, ROIs 5 regions

of interest, VTA 5 volume of tissue activated, WM 5 white matter,

QC 5 quality check.
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processed, preoperative T1w structural image was used to
create grey-matter (GM) regions of interest (ROIs) as target
ROIs for tractography. Specifically, the ROIs were dilated
with ‘3dROIMaker’ by a maximum of two neighboring
voxel layers with the ‘-neigh_face_edge’ option that defines
two voxels sharing a face or an edge to be neighbors. The
expansion was stopped if it reached either another ROI (pre-
venting ROI overlap) or voxels with an FA value larger than
0.2 (preventing white-matter overrun).

Image alignments

A custom AFNI script performed an affine registration
of each patient’s postoperative CT and T1w volumes, an
affine registration of each patient’s preoperative T1w and
target T2w volumes, and a nonlinear registration of each
patient’s pre- and postoperative T1w volumes. All volume
registrations were visually checked for quality. From the
calculated transformations, all images were registered to
the target T2w volume, as DWIs had been registered to
this space during TORTOISE preprocessing.

Postop CT –> Postop T1w. To prepare the postoperative
T1w volume for registration to the postoperative CT vol-
ume, low-signal regions were masked using AFNI’s ‘3dAu-
tomask’, followed by an intensity inversion. After centering
the CT image to the postoperative T1w, a brain tissue mask
was created from the postoperative CT using the intensity
value range for soft tissue from the Hounsfield scale [Hebb
and Poliakov, 2009]. The postoperative CT tissue mask and
inverted T1w volume were then centered and affinely reg-
istered at the lower resolution of the T1w volume using
AFNI’s ‘align_epi_anat.py’ with the normalized Mutual
Information cost function [Wells et al., 1996]. Registration
was verified using electrode trajectories in each image
(hypointensities in the T1w, hyperintensities in the CT) as
quality control [Paek et al., 2008; Pinsker et al., 2008].

Preop T1w –> Target T2w. Skull-stripped preoperative
T1w volume was affinely registered to skull-stripped tar-
get T2w volume using AFNI’s ‘align_epi_anat.py’ with the
LPC cost function.

Postop T1w –> Preop T1w. Pre- and postoperative skull-
stripped T1w volumes underwent nonlinear registration
with AFNI’s ‘3dQwarp’.

Transformation concatenation. After manually quality
checking all three registrations, transformation matrices
and displacement volumes computed in section “Image
alignments” were concatenated to bring each of the original
volumes into registration with the target T2w volume in
one step to minimize blurring from sequential resampling.

DWI data preprocessing and DTI estimation

Gradient direction data obtained from DWI DICOM
images was AFNI-formatted using AFNI’s ‘1dDW_Gra-

d_o_Mat’ with scanner-specific formatting (e.g., averaging
b 5 0 references and matching scanner and file header
coordinate frames). After TORTOISE preprocessing, ten-
sors were estimated from diffusion data using AFNI’s
‘3dDWItoDT’ using nonlinear fits. As a viewable quality
control of TORTOISE preprocessing and the gradient
matching, whole brain deterministic tractography was
implemented using the FATCAT command ‘3dTrackID’
with the ‘DET’ mode option. For this, default tracking
parameters were used (FA >0.2, turning angle <608, and
keeping tracts with length >20 mm) to find tracts within
the whole brain mask with OR logic. The resulting file
was viewed in SUMA along with a volume image to
ensure that no obvious regions had been masked out and
that major bundles appeared where expected. Uncertainty
intervals of FA and principal diffusion directions were
estimated with ‘3dDWUncert’ using 500 jackknife-
resampling iterations, for use in the probabilistic tractogra-
phy (see “FATCAT probabilistic tractography”).

Contact Reconstruction and Probabilistic

Tractography: @DBSproc2

DBS electrode/contact reconstruction and

localization (@eproc within @DBSproc2)

Electrodes and contacts were automatically segmented
and labeled from the postoperative CT volume by exagger-
ating the contrast of bright structures that were sur-
rounded by darker tissue on the scale of 2 mm.
Specifically, these steps isolated high intensity voxel clus-
ters, selected voxel clusters inside the skull, and identified
electrodes based on their geometry.

The original CT volume was segmented into multiple
classes, such as air, soft tissue, two bone types, and metal
using maximum likelihood classification in a uniform
mixture of a Gaussian model [Gopinath, 1998]. The model
was initialized with intensity parameters from the Houns-
field scale. Voxels labeled as bone were extracted. The
resultant volume was first eroded by three voxels, and
then dilated by three voxels, in order to retain clusters
while reducing the likelihood of having clusters bridged
by narrow structures. Clusters smaller than 10,000 voxels
were also eliminated. A two-manifold surface, initialized
as a sphere, was then deformed to wrap around the
remaining bone-labeled voxels. Voxels inside that surface
were then identified as electrodes and twelve erosion
steps were undertaken to remove the majority of superior
skull bone voxels. The final, eroded volume was used to
mask a transformed version of the original CT in order
to enhance the spatial contrast between the electrodes
and the rest of the brain per the following voxel-wise
equation:

Y’v5 Mi– Moð Þ=Mo½ �3Yv (1)
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where

Yv is the intensity at voxel v in the CT volume in
Hounsfield units,

Mi is the average voxel intensity within a 2 mm radius
inner sphere (Si) centered on v,

Mo is the average voxel intensity within a 5 mm radius
outer sphere (So) centered on v, but excluding voxels in
regions Si,

Y’v is the transformed intensity at voxel v in the CT
volume.

Clusters of more than twenty bright (Y’v >1,000.0) voxels
were retained, and features for each of them (e.g., average
intensity, volume, and center of mass coordinates) were
assembled in order to distinguish electrode clusters. The
principal directions and eigenvalues of each cluster were
then estimated, and were used to capture cluster shape with
estimated surface anisotropy (SA, values range from 0 being
isotropic sphere to 1 being one-dimensional rod) and linear
measure (Cl) values. Note that SA, principal directions, and
eigenvalues were calculated from each cluster’s geometry,
not from diffusion data. Cluster orientation was estimated
as the dot product of the cluster’s principal direction and
the z axis, as electrodes were inserted from superior open-
ings in the cranium. The two electrodes were identified as
the largest two clusters having a mean intensity value larger
than 1000, SA and Cl larger than 0.95, and a dot product
larger than 0.5. Automatic identification of left and right
electrodes was based on their centers of mass’s x-coordinate
(with the larger value corresponding to the left side). After
successful electrode isolation, electrode volume masks and
contour surface coordinates were also transformed into the
target T2w space by concatenation of appropriate spatial
transforms using AFNI’s ‘3dNwarpXYZ’.

To assign depth along an electrode, a surface model of its
cluster was constructed, and each node was projected along
its computed principal direction. The bottommost node was
identified, and subsequent node depth was determined
based on the distance between a node’s projection along the
principal direction and that of the bottom node. To reduce
effects of electrode surface curvature, nodes of depth up to
35 mm were included in the estimation of the principal
direction. The four contacts of each electrode were identified
by grouping nodes within depths 61 mm of 2.25, 4.25, 6.25,
and 8.25 mm defined from the electrode geometry. The cen-
ters of mass for these groups were computed and repre-
sented the centroid coordinates of the contacts to be used for
constructing volumes of tissue activation detailed next.

Volume of tissue activated (VTA)

The volume of tissue activated (VTA) was estimated as
a sphere centered at the contact centroid coordinate whose
radius was calculated from individual therapeutic imped-
ance and stimulation voltage, as described by the follow-

ing equation from the literature [M€adler and Coenen,
2012]:

r5 2 ð k43Ið Þ2�ððk4Þ23 Ið Þ21 23k13k43I 1 k1ð Þ21 43k3

3VÞ1 k1Þ=ð23k3Þ (2)

where

I is the electrode impedance in ohms, V is the contact
voltage in volts,

k4, k1, and k3 are model constants with values of
0.0009856, 21.0473, and 0.2786, respectively,

r is the calculated VTA sphere radius in millimeters.

Impedances and stimulation voltages are patient-
dependent, thus this information is provided by the user as
an input text file per hemisphere (l_volt.1D and r_volt.1D in
the example dataset). Further information is provided in the
Supporting Information: DBSproc Documentation.

FATCAT and tractography estimation

Network construction. For full probabilistic tractography,
FATCAT uses repeated iterations of whole brain tracking
to estimate the likelihood of structural WM connections
between all pairs of target ROIs within a network. For this
analysis, the network was composed by the 89 GM
inflated ROIs (see “Tissue segmentation and ROI setup”)
with the addition of the VTA of interest. ROIs representing
VTAs were added by replacing anatomical ROI values by
the VTA ROI value (Supporting Information Fig. 1).

FATCAT probabilistic tractography. “Connectomic”
probabilistic tractography on the whole brain GM parcella-
tion was performed using the FATCAT command
‘3dTrackID’ with the ‘PROB’ mode option. Tracking param-
eters used were: FA >0.2, turning angle <608, keeping tracts
with length >20 mm, thresholding fraction >0.021, five
seeds per voxel and a total of 5000 Monte Carlo iterations
[Taylor and Saad, 2013]. For each patient, connectomic con-
nections were first calculated among the 89 inflated GM
ROIs without any VTA, in order to understand the underly-
ing intranetwork connectivity. To understand VTA-to-
network connections, probabilistic tractography (with the
same parameters as above) was then performed on the same
set of anatomical ROIs plus the specific VTA ROI.

For connectomic data analysis, we examined the auto-
matically generated ‘*.grid’ file output of ‘3dTrackID’, which
contains matrices (here, of size 89 3 89) of output statistics
describing the properties of the tractographic connections
between all pairs of ROIs, such as the number of tracts and
the mean and standard deviation of FA. For VTA-to-
network data, we extracted a vector (1 3 90 ‘*.row’ file) con-
taining output statistics for the tractographic connections
between the VTA and every other target ROI from the
‘*.grid’ file using the FATCAT command ‘fat_roi_row.py’,
specifying the VTA ROI value with the ‘2r’ option.
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To visualize these tractographic network connections in
SUMA, we performed a miniprobabilistic tractography,
which is a methodology to include tensor uncertainty esti-
mates with streamline tract propagation for increased
robustness. The same default tracking parameters were
utilized as previously described for deterministic tractog-
raphy, except that we also performed 10 Monte Carlo iter-
ations of tracking with perturbed tensor values, as a
“mini” form of the full probabilistic tractography, while
simultaneously maintaining a reasonable number of tracts
for visualization [Taylor et al., 2015].

Validation

We have taken three steps to estimate the validity of our
results beyond visual inspection of the registrations. First,
we evaluated the contact location with respect to the STN.
Second, we estimated the FA values for the selected VTAs
and compared them to the average values of the STN.
Third, we used the number of generated tracts as the
proxy for a quality control measure for voltage adjust-
ments (e.g., a wider WM area being covered when using a
larger voltage).

Contact localization: anatomical validation

To compare contact coordinates among patients, we
used the Talairach–Tournoux template (‘TT space’, the
1 mm isotropic AFNI volume ‘TT_N27’) as a common
coordinate space. To do so, we used transformation
matrices created from a nonlinear registration between
each patient’s target T2w-aligned preoperative T1w vol-
ume and TT_N27 using AFNI’s ‘3dQwarp’. Spheres
with a 2 mm radius centered at the contact centroid
coordinate of each SC and NE were transformed to the
TT space by applying the T1w-to-TT transformation
matrix using AFNI’s ‘3dNwarpApply’. We calculated
the spatial distribution of the SCs (one per patient per
hemisphere) and the NE contacts (those with no clinical
benefits) with respect to the left and right STN ROIs in
TT space.

Local fractional anisotropy estimation

To understand the structural properties of tissue surround-
ing contacts, we calculated average FA value and average
size of our constructed VTAs. Specifically, we measured the

Figure 2.

Images used for visually confirming registration quality. Image

and coordinate data shown is from a single patient. (A) Preoper-

ative T1w (left) and target T2w (right) volumes overlaid in the

axial (top) and sagittal (bottom) planes. Volumes underwent an

affine registration with AFNI’s ‘align_epi_anat.py’. (B) Post- (left)

and preoperative (right) T1w volumes overlaid in the axial (top)

and sagittal (bottom) planes. Volumes underwent a nonlinear

registration in the AFNI function ‘auto_warp.py’. (C) Postopera-

tive T1w volume overlaid with green and blue outlines of the

electrodes’ surface reconstructed from registered CT images,

zoomed-in views in axial, sagittal, and coronal. Volumes under-

went an affine registration with AFNIs ‘align_epi_anat.py’. (D)

Reconstructed 3D surface of registered CT volume with two

axial slices of postoperative T1w volume; electrodes shown as

grey linear structures. (E) Anterior view of whole-brain deter-

ministic tractography for quality control of processing, shown

with properly formatted gradient direction data. (F) Yellow dots

are eight contacts, as detected by DBSproc, for a single patient

displayed on coronal views of postoperative T1w.
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FA values and the sizes of the VTAs created for the SCs at
three voltage levels: 1 V, entry voltage and exit voltage. We
also measured the FA values and sizes of VTAs created for
the NE contacts at entry voltage. We normalized the distri-
bution by its higher frequency value, to emphasize the shape
of the distribution with respect to FA.

Finally, we measured the average FA value of each
patient’s STN, defined within the TT_N27 template,
included in the AFNI distribution, and transformed to the
patient space by applying the inverse T1w-to-TT transfor-
mation matrix, created in section “Contact localization:
anatomical validation”, using AFNI’s ‘3dNwarpApply’.
We note that, currently, there is no gold standard for the
delineation of the STN. As a proxy for the demarcation,
we inflated the STN ROIs. After this process, we calcu-
lated and compared the average values FA. A proper
placement would be assumed to have a higher average FA
when inflated, since the STN would be surrounded by
fibers from the zona incerta, subthalamic fasciculus, ansa
lenticularis, and internal capsule.

Tractography validation

To show how a change in contact voltage would affect trac-
tography results between clinically relevant voltages, we
compared the total number of VTA-to-network tracts from
each patient’s VTAs by performing an univariate general lin-
ear model analysis with voltage level (1 V, entry voltage, and
exit voltage) as fixed effect, and with patient ID and contact
label as random effects. Post hoc group comparisons were
made with Bonferroni-corrected paired t tests. The total num-
ber of VTA-to-network tracts for NE contacts was compared
to the corresponding hemisphere SC at entry voltage using a
paired t test. Statistical analyses were performed with the
SPSS software package (Version 19, IBM, Armonk, NY).

RESULTS

Registration results at each step (Fig. 2A–D) were visu-
ally inspected. The pipeline was observed to succeed for

Figure 3.

Locations of stimulating contacts (SC) (N 5 22 for each hemi-

sphere) and noneffective contacts (NE) (N 5 7 for left hemisphere,

N 5 5 for right hemisphere) represented as 2 mm spheres

back-transformed back to standardized Talairach–Tournoux space

(AFNI’s TT_N27 volume) and overlaid on the 3D reconstructed

TT_N27 STN ROIs (top). Bottom images show the same data in

the TT_N27 sagittal, axial, and coronal plane (blue and green out-

lines represent STN ROIs’ surfaces). Color bar represents the

number of overlapping contacts: Yellow/red positive values repre-

sents SCs, blue negative values represent NE contacts.
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all datasets, providing registrations that passed visual
inspection and whole-brain deterministic tractography that
showed full coverage of tracts and no gradient-formatting
errors (Fig. 2E). For each STN case included in the study,
we selected a contact as SC for each hemisphere (N 5 44,
22 patients 3 2 contacts). NE contacts were limited to
N 5 7 (5 patients) for the left hemisphere, and N 5 5 (4
patients) for the right hemisphere. All GPi cases resulted
in a pair of SC (N 5 8, 4 patients 3 2 contacts).

Validation

Anatomical validation

The individual coordinates of the selected contact and nonef-
fective contacts were compared in the TT_N27 standard space.
Left-hemisphere SCs were 2.1 6 2.3 mm lateral, 1.9 6 1.4 mm
anterior, and 0.9 6 2.5 mm ventral, whereas NE contacts were
0.9 6 3.2 mm lateral, 1.4 6 2.4 mm anterior, and 5.3 6 2.6 mm
ventral/inferior to the left STN center-of-mass. Right-
hemisphere SCs were 1.7 6 1.7 mm lateral, 1.2 6 1.6 mm
anterior, and 1.0 6 3.0 mm dorsal, whereas NE contacts were

1.0 6 1.9 mm lateral, 0.4 6 2.0 mm posterior, and 3.30 6

4.26 mm inferior to the right STN center-of-mass (Fig. 3).

Fractional anisotropy

The average FA values of voxels within the VTAs cre-
ated for the SC contacts at 1 V, entry voltage and exit volt-
age were 0.54 6 0.16, 0.54 6 0.15, and 0.53 6 0.12,
respectively. A normalized histogram revealed an increas-
ing proportion of voxels with higher FA values for the
VTAs in comparison to the STN tissue (Fig. 4B). Paired
t tests between FA values at the different VTA voltage lev-
els were not statistically significant. However, the brain
regions reached (Fig. 4A) and the total number of tracts
passing by a particular contact’s VTA increased with the
increase in stimulating voltage (Fig. 4C). As described in
Eq. 2), the VTA size is proportional to the stimulating volt-
age. Average sizes of the SCs VTA were: 4.3 6 4.9 voxels
at 1 V, 16 6 16 voxels at entry voltage (2.0 6 0.9 V), 55 6 34
at exit voltage (4.3 6 1.2 V).

The FA values of the VTAs for NE contacts and their
matched SC at entry voltages were significantly different

Figure 4.

Volume of tissue activated (VTA) effects on tractography. Data

shown at 1V, entry voltage, and exit voltage for the SCs and at

entry voltage for NE contacts. (A) Single subject example of the

tracts that VTA stimulates on a right hemisphere. SUMA images

illustrate miniprobabilistic tract representations at selected stimu-

lation voltages. In each case, the same image with miniprobabilis-

tic tracts is shown passing through the given red sphere

(represents VTA). Bundles of tract connections between two par-

ticular GM ROIs that pass by VTA are indicated in different colors

(colors per GM ROI pairs were matched across the panels). Axial

slices shown pass by the centroid of the VTA. (B) Distribution of

FA values for STN in all hemispheres, and for VTA constructed

with the SC at three different voltages, and for the NE contacts

at entry voltage. Histogram is max-normalized to enhance the

distribution of FA values. (C) The number of probabilistic tracts

that pass by each VTA for SC at three different voltages and for

NE at entry voltage. Bar graph represents the average total num-

ber of probabilistic tracts originating from the VTA to the whole-

brain network for each patient at each of the shown voltage lev-

els. For (SC) the FA distribution is similar for different VTAs (sim-

ilar shape and values for 1V, entry and exit on B), but different

number of tracts (C), which reflects in reaching fiber tracts

towards more brain areas (A). On the contrary, NE contacts

have a different FA distribution, more like a bimodal perhaps (B)

have low number of total tracts (C), however it reaches similar

target areas as the exit voltage (A); thus, making it noneffective

even at low voltages. Average voltage values are provided in Table

I. SC 5 stimulating contact; NE 5 noneffective contact.
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(p 5 0.01, paired t test), being 0.51 6 0.17 for the NE and
0.64 6 0.20 for the SC. The normalized histogram analysis
revealed a more diffuse distribution of FA values through-
out NE VTA voxels compared to SC entry voltage VTA
voxels (Fig. 4B).

The average FA of the STN ROIs was 0.38 6 0.06 and
increased to 0.41 6 0.05 after inflation by two voxels, indi-
cating the expansion into white matter tissue. Similar
results were observed for the GPi ROI, where the average
FA of the original ROIs was 0.28 6 0.04, and increased to
0.34 6 0.05 after inflation by two voxels.

Clinical voltage tractography

VTA-to-network probabilistic tracking was performed to
investigate connections from three VTA estimations (at 1V
and at two clinically relevant windows: entry voltage and
exit voltage) for all patients at SC (N 5 44, 22 patients 3 2
contacts) and at entry voltage for the NE contacts (N 5 12).
The average voltages and radii for 1V, entry voltage, and
exit voltage levels are shown in Table I. Similarly, the
univariate general linear model found a main effect for
voltage (F 5 22.34, p <0.0001) in this subset. Bonferroni’s-
corrected paired t tests between contacts with all three
voltage levels (N 5 44; 3 comparisons, p <0.0167) found
that SC at exit voltages had a significantly greater number
of tracts than SC and entry voltages (p <0.0001), and that
entry voltage had a significantly greater number of tracts
than 1V (p <0.0001). SC and NE contacts at entry voltage
were not significantly different. In most cases, voltage
increases resulted in tract bundle pathways becoming
denser, providing a more robust finding, or in new bundle
pathways appearing, with different functional endpoint
regions being affected (Fig. 4A).

DISCUSSION

Here we have described DBSproc, an open source soft-
ware pipeline for combining multimodal data sets, localiz-
ing DBS electrode contacts in individual patient space, and
investigating tractographic patterns of contacts at several
voltage levels. Importantly, the pipeline contains both
processing features (such as denoising, mapping among
patient spaces, and calculating quantities of interest) and
quality control steps with direct user visualization. In this
work, we have presented the results of testing the pro-
posed method using retrospective imaging data.

We have validated the proposed methodology both
quantitatively and qualitatively by evaluating the locations
of selected (therapeutic) contacts in relation to the STN, as
defined by the AFNI Talairach–Tournoux template vol-
ume. The SCs localized dorsolateral from the NE contacts,
in accordance with present targeting practices, suggest
that we are localizing successfully implanted electrodes
[McClelland et al., 2005; Plaha et al., 2006]. This is consist-
ent with the positive clinical response seen in all the

patients included here. While the procedures were devel-
oped for the STN, we were able to apply the same proce-
dures to a different target location (that of the GPi). Our
positive findings in GPi patient data are especially encour-
aging, as they show that the proposed technique can be
also applied to diverse DBS target populations.

Our VTAs, estimated using patient- and contact-specific
voltage and impedance data, have reliably demonstrated dif-
ferent levels of network connectivity. These results have
shown that more fibers and brain areas are reached with
higher voltage/larger VTA radius; tractography measures
such as the number of tracts should be interpreted with
appropriate caveats and not taken to be literal representations
of underlying white-matter bundles [Jones et al., 2013].

The consistency and robustness of the DBSproc method’s
results (demonstrated using anatomical, DTI parameter and
tractographic comparisons) are due to the fact that most
information is derived directly from each patient’s own
data. Although anatomical templates are used for tissue seg-
mentation, the resulting tissue maps are individualized and
remain within a patient-specific space. Furthermore, all
image registrations rely on unique features (e.g., electrode
artifacts) and our pipeline allows for quality checking in
both two- and three-dimensional views.

As DBS surgical outcomes can be highly variable, these
data allow us to identify overall trends of consistent
regional connectivity across patients without sacrificing
the ability to investigate individual structural or tracto-
graphic differences. In the current validation study, one
example of this was shown using normalized tractographic
statistics, which also provided a quantitative measure for
the effects of voltage increases. Current work is underway
to associate the local properties of the tracked WM itself
(i.e., FA, mean diffusivity and other DTI parameters along
the tracts) with the VTAs and DBS outcomes. Furthermore,
the identification of white matter connections by grey mat-
ter targets is likely to provide better insight to physiologic,
functional, and behavioral correlates [Riva-Posse et al.,
2014]. This may be initially implemented by selecting elec-
trodes and VTAs via the set of FreeSurfer parcellated GM
regions that the tract bundles intersect. In future studies,
however, we also plan to acquire and include resting-state
or task-based fMRI data to supplement the functional
outcomes.

TABLE I. Voltage, radii, and number of estimated tracts

for each voltage level VTA

SC 1V SC entry SC exit NE entry

Voltage (V) 1.00 2.02 6 0.86 4.25 6 1.24 1.57 6 0.36
Radii (mm) 1.47 6 0.43 2.17 6 0.69 3.36 6 0.79 1.70 6 0.57
Nr tracts 1.98 3 106 5.14 3 106 1.26 3 107 3.07 3 106

SC 5 selected contact (N 5 44; 22 patients 3 2 hemispheres),
NE 5 noneffective contact (N 5 7 for left hemisphere; N 5 5 for
right hemisphere).
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Limitations

Our current method of estimating VTAs is limited to a
simplified spherical model, which we included in the cur-
rent software package due to its ability to easily incorpo-
rate patient-specific contact voltage and impedance values.
Previous modeling work has incorporated the different
conductivity properties of grey and white tissue as well as
axonal anatomical detail [Butson et al., 2006, 2007]. The
VTA estimation could therefore be improved by creating a
model including tissue composition together with the clini-
cal impedance and voltage data we are currently using.

In addition, we are unable to control for electrode local-
ization or connectivity changes due to cell death, brain
shift, or any other factors attributable the surgical implan-
tation procedure itself. We also cannot account for variable
impedance values throughout the relevant anatomic terri-
tory which impact current delivery effectiveness [Satzer
et al., 2015], and how the impedance varies in time post-
operatively [Cheung et al., 2014; Lungu et al., 2014].

CONCLUSIONS

Despite the limitations of the methodology, we propose
a modular and open-source software pipeline (DBSproc
included within the AFNI distribution) for coregistering
MR and CT data for patient-specific localization and trac-
tographic analysis of DBS electrodes. The field of DBS
therapy is moving from a “target structure” approach
towards a “target network” approach, and using tractogra-
phy for clinical and research purposes may well become a
standard approach in the near future. We expect that this
pipeline will grow with further developments and refine-
ments, including feedback from a community of users. We
hope this publicly available toolbox will be used in con-
junction with clinical outcome data in order to better
understand the tractographic profiles or phenotypes asso-
ciated with successful implantation and programming
[Riva-Posse et al., 2014]. Equally important will be the
network-level characterization of long-term side effects
such as weight gain in STN DBS [Mills et al., 2012].
Indeed, our group has found clinically relevant tracto-
graphic differences that are beyond the scope of this
manuscript. While being a research tool, we hope future
results from this toolbox will inform future DBS implanta-
tion, electrode programming, and potentially aid defining
new surgical targets.

ACKNOWLEDGMENTS

Our work was supported by the NINDS Intramural Pro-
gram. The authors declare no conflict of interest and have
nothing to disclose regarding to the research described in
the manuscript. P.M.L. thanks Dr. Sule Tinaz for her
mentorship.
Contract grant sponsor: Medtronic Deep Brain Stimulation
Therapy Fellowship Grant 2014–2015 (to N.V-A.)

REFERENCES

Anthofer JM, Steib K, Fellner C, Lange M, Brawanski A, Schlaier J

(2015): DTI-based deterministic fibre tracking of the medial

forebrain bundle. Acta Neurochir (Wien) 157:469–477.
Basser PJ, Pierpaoli C (1996): Microstructural and physiological

features of tissues elucidated by quantitative-diffusion-tensor

MRI. J Magn Reson B 111:209–219.
Bazin P-L, Cuzzocreo JL, Yassa MA, Gandler W, McAuliffe MJ,

Bassett SS, Pham DL (2007): Volumetric neuroimage analysis

extensions for the MIPAV software package. J Neurosci Meth-

ods 165:111–121.
Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007):

Patient-specific analysis of the volume of tissue activated dur-

ing deep brain stimulation. NeuroImage 34:661–670.
Butson CR, Maks CB, McIntyre CC (2006): Sources and effects of

electrode impedance during deep brain stimulation. Clin Neu-

rophysiol 117:447–454.
Cheung T, Noecker AM, Alterman RL, McIntyre CC, Tagliati M

(2014): Defining a therapeutic target for pallidal deep brain

stimulation for dystonia. Ann Neurol 76:22–30.
Cox RW (1996): AFNI: Software for analysis and visualization of

functional magnetic resonance neuroimages. Comput Biomed

Res 29:162–173.
Descoteaux M, Deriche R, Kn€osche TR, Anwander A (2009):

Deterministic and probabilistic tractography based on complex

fibre orientation distributions. IEEE Trans Med Imaging 28:

269–286.
Fischl B (2012): FreeSurfer. NeuroImage 62:774–781.
Gopinath RA (1998): Maximum likelihood modeling with Gaus-

sian distributions for classification. In: Proceedings of the 1998

IEEE International Conference on Acoustics, Speech and Signal

Processing, 2:661–664.
Hebb AO, Poliakov AV (2009): Imaging of deep brain stimulation

leads using extended Hounsfield unit CT. Stereotact Funct

Neurosurg 87:155–160.
Henderson JM (2012): “Connectomic surgery”: Diffusion tensor

imaging (DTI) tractography as a targeting modality for surgical

modulation of neural networks. Front Integr Neurosci 6:15.
Hubble JP, Busenbark KL, Wilkinson S, Penn RD, Lyons K, Koller

WC (1996): Deep brain stimulation for essential tremor. Neu-

rology 46:1150–1153.
Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992): Accuracy of clin-

ical diagnosis of idiopathic Parkinson’s disease: A clinico-

pathological study of 100 cases. J Neurol Neurosurg Psychiatry

55:181–184.
Jones DK, Kn€osche TR, Turner R (2013): White matter integrity,

fiber count, and other fallacies: The do’s and don’ts of diffu-

sion MRI. NeuroImage 73:239–254.
Kovanlikaya I, Heier L, Kaplitt M (2014): Treatment of chronic

pain: Diffusion tensor imaging identification of the ventropos-

terolateral nucleus confirmed with successful deep brain stim-

ulation. Stereotact Funct Neurosurg 92:365–371.
Kringelbach ML, Green AL, Aziz TZ (2011): Balancing the brain:

Resting state networks and deep brain stimulation. Front

Integr Neurosci 5:8.
Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C,

Hoffmann D, Benabid AL (1998): Electrical stimulation of the

subthalamic nucleus in advanced Parkinson’s disease. N Engl J

Med 339:1105–1111.
Lungu C, Malone P, Wu T, Ghosh P, McElroy B, Zaghloul K,

Patterson T, Hallett M, Levine Z (2014): Temporal

r Lauro et al. r

r 432 r



macrodynamics and microdynamics of the postoperative
impedance at the tissue-electrode interface in deep brain stim-
ulation patients. J Neurol Neurosurg Psychiatry 85:816–819.

M€adler B, Coenen VA (2012): Explaining clinical effects of deep
brain stimulation through simplified target-specific modeling
of the volume of activated tissue. Am J Neuroradiol 33:
1072–1080.

McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus
BL (2001): Medical Image Processing, Analysis and Visualization
in Clinical Research. In: Proceedings of the 26th IEEE Interna-
tional Symposium on Computer-Based Medical Systems, 0:381.

McClelland S, Ford B, Senatus PB, Winfield LM, Du YE, Pullman
SL, Yu Q, Frucht SJ, McKhann GM, Goodman RR (2005): Sub-
thalamic stimulation for Parkinson disease: Determination of
electrode location necessary for clinical efficacy. Neurosurg
Focus 19:E12.

Mills KA, Scherzer R, Starr PA, Ostrem JL (2012): Weight
change following GPi or STN deep brain stimulation in Par-
kinson’s disease and dystonia. Stereotact Funct Neurosurg
90:386–393.

Paek SH, Han JH, Lee J-Y, Kim C, Jeon BS, Kim DG (2008): Elec-
trode position determined by fused images of preoperative
and postoperative magnetic resonance imaging and surgical
outcome after subthalamic nucleus deep brain stimulation.
Neurosurgery 63:925–936 (discussion 936–937).

Pierpaoli C, Walker L, Irfanoglu MO, Barnett A, Basser P, Chang
LC, Koay C, Pajevic S, Rohde G, Sarlls J, Wu M (2010): TOR-
TOISE: An integrated software package for processing of diffu-
sion MRI data. ISMRM 18th annual meeting, Stockholm,
Sweden, 1597.

Pinsker MO, Herzog J, Falk D, Volkmann J, Deuschl G, Mehdorn
M (2008): Accuracy and distortion of deep brain stimulation
electrodes on postoperative MRI and CT. Zentralblatt F€ur Neu-
rochir 69:144–147.

Plaha P, Ben-Shlomo Y, Patel NK, Gill SS (2006): Stimulation of
the caudal zona incerta is superior to stimulation of the sub-
thalamic nucleus in improving contralateral parkinsonism.
Brain J Neurol 129:1732–1747.

Riva-Posse P, Choi KS, Holtzheimer PE, McIntyre CC, Gross RE,
Chaturvedi A, Crowell AL, Garlow SJ, Rajendra JK, Mayberg
HS (2014): Defining critical white matter pathways mediating
successful subcallosal cingulate deep brain stimulation for
treatment-resistant depression. Biol Psychiatry 76:963–969.

Rorden C, Brett M (2000): Stereotaxic display of brain lesions.
Behav Neurol 12:191–200.

Saad ZS, Glen DR, Chen G, Beauchamp MS, Desai R, Cox RW (2009):
A new method for improving functional-to-structural MRI align-
ment using local Pearson correlation. NeuroImage 44:839–848.

Saad ZS, Reynolds RC (2012): SUMA. NeuroImage 62:768–773.
Satzer D, Maurer EW, Lanctin D, Guan W, Abosch A (2015): Ana-

tomic correlates of deep brain stimulation electrode imped-
ance. J Neurol Neurosurg Psychiatry 86:398–403.

Schlaier J, Anthofer J, Steib K, Fellner C, Rothenfusser E,
Brawanski A, Lange M (2015): Deep brain stimulation for
essential tremor: Targeting the dentato-rubro-thalamic tract?
Neuromodulation J Int Neuromodulation Soc 18:105–112.

Sweet JA, Walter BL, Gunalan K, Chaturvedi A, McIntyre CC,
Miller JP (2014): Fiber tractography of the axonal pathways
linking the basal ganglia and cerebellum in Parkinson disease:
Implications for targeting in deep brain stimulation.
J Neurosurg 120:988–996.

Taylor PA, Jacobson SW, van der Kouwe A, Molteno CD, Chen G,
Wintermark P, Alhamud A, Jacobson JL, Meintjes EM (2015):
A DTI-based tractography study of effects on brain structure
associated with prenatal alcohol exposure in newborns. Hum
Brain Mapp 36:170–186.

Taylor PA, Saad ZS (2013): FATCAT: (an efficient) Functional and
Tractographic Connectivity Analysis Toolbox. Brain Connect 3:
523–535.

Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold
DA, Pierpaoli C (2014): Anatomical accuracy of brain connec-
tions derived from diffusion MRI tractography is inherently
limited. Proc Natl Acad Sci USA 111:16574–16579.

Vidailhet M, Vercueil L, Houeto J-L, Krystkowiak P, Benabid A-L,
Cornu P, Lagrange C, T�ezenas du Montcel S, Dormont D,
Grand S, Blond S, Detante O, Pillon B, Ardouin C, Agid Y,
Dest�ee A Pollak P, French Stimulation du Pallidum Interne
dans la Dystonie (SPIDY) Study Group (2005): Bilateral deep-
brain stimulation of the globus pallidus in primary generalized
dystonia. N Engl J Med 352:459–467.

Volkmann J, Moro E, Pahwa R (2006): Basic algorithms for the
programming of deep brain stimulation in Parkinson’s disease.
Mov Disord 21 Suppl 14:S284–S289.

Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R (1996):
Multi-modal volume registration by maximization of mutual
information. Med Image Anal 1:35–51.

r DBSproc: Electrode Localization and Tractography r

r 433 r


	l
	l

